Tag: sustainability

The Sustainable Biomass Program

In 2013, Drax co-founded the SBP together with six other energy companies.

SBP builds upon existing forest certification programmes, such as the Sustainable Forest Initiative (SFI), Forest Stewardship Council (FSC) and the Programme for the Endorsement of Forest Certification (PEFC). These evidence sustainable forest management practices but do not yet encompass regulatory requirements for reporting greenhouse gas (GHG) emissions. This is a critical gap for biomass generators, who are obligated to report GHG emissions to European regulators.

There is also limited uptake of forest-level certification schemes in some key forest source areas. SBP is working to address these challenges.

SBP certification provides assurance that woody biomass is supplied from legal and sustainable sources and that all regulatory requirements for the users of biomass for energy production are met. The tool is a unique certification scheme designed for woody biomass, mostly in the form of wood pellets and wood chips, used in industrial, large-scale energy production.

SBP certification is achieved via a rigorous assessment of wood pellet and wood chip producers and biomass traders, carried out by independent, third party certification bodies and scrutinised by an independent technical committee.

5 more things you never knew about forests

Forests have long been places of mystery for people. It’s within a dark wood that Virgil and then Dante locate the gates to the underworld, while Shakespeare’s magical Midsummer Night’s Dream plays out in a mystical forest near Athens.

And while fairies and portals may be the stuff of fantasy, the forests that inspired them remain a source of mystery to this day.

Here are five more things you might not know about forests.

The forest sector employs more than 50 million people around the world

Employment is one of the major driving forces of global urbanisation as waves of people in both developed and less developed countries head to cities in search of better wages and living standards. But outside of cities, industries still thrive – particularly forestry, which officially employs 13.2 million people around the world.

The World Bank even suggests that by counting people in informal forestry employment and those who earn a living indirectly through forests, timber or fuel, the number of people professionally involved in forestry is closer to 54 million worldwide.

Forestry’s total contribution to global GDP is also sizeable. It currently adds an impressive $120 billion directly – a number expected to grow by as much as 50% over the next 10 to 15 years. Even more impressive is the contribution of the wider timber and wood product sector, which generates as much as $600 billion – 1% of global GDP, according to the World Bank.

We will soon be able weigh the world’s forests

 We know forests blanket about 30% of the land on earth, but what about calculating the mass and volume of all those trees? That’s a different task entirely, but one which could offer important insights for sustainable forestry.

In 2021 the European Space Agency (ESA) will launch Earth Explorer Biomass, the first satellite to carry a P-band radar, which is capable of penetrating the forest canopies and capturing data on the density of tree trunks and branches. Essentially, it will be able to weigh the world’s forests.

Over the course of its five-year mission, it will produce 3D maps every six months, giving scientists data on forest density across eight growth cycles. The result will be a much clearer image of the amount of biomass present around the earth’s different forested areas and how it is changing over time as a result of carbon dioxide (CO2) absorption.

Forests are an energy source that clean up after themselves

For all the IKEA furniture made from wood, 50% of the world’s total wood production is still used for energy with some 2.4 billion people globally using it for heating, cooking and electricity generation.

The world’s forests have an energy content about 10 times that of the annual primary energy consumption, making it a hugely useful resource in helping meet energy demand – if it is managed and used in a sustainable way.

As with other energy sources that are combusted, wood releases CO2, . However, if this fuel is drawn from a responsibly managed forest or a sustainable system of growing forests, its carbon emissions are offset by new tree plantings, which absorb carbon as they grow. This means the only emissions produced are those that come from transporting the wood itself.

The US Food and Agriculture Organization predicts that by 2030, forestry mitigation – with the help of carbon pricing – could contribute to CO2 reductions of 0.2 to 13.8 gigatonnes a year. 

 

Forests improve drinking water

Forests provide what’s known as natural infrastructure, which not only regulate water levels but also improve the quality of drinking water. Root systems and organic material like the leaves and twigs that make up the forest floor absorb water, reducing runoff and erosion. They also play a part in absorbing nutrients that are harmful to water quality.

The forest canopy further helps this process by releasing water vapour, helping regulate rainfall and providing protection against aerial drifts of pesticides, which can filter back into water systems.

Forests can suck up a third of CO2 emissions

While governments around the world look to shift to cleaner, renewable energy sources and cut emissions, forests have been silently tackling climate change for centuries. Over the past few decades, the world’s forests have absorbed as much as 30% of annual global human generated CO2 emissions. In fact, their ability to deal with fossil fuel-derived carbon emissions is even written into the Paris Climate Agreement.

While natural forests can contribute massively to sequestering (absorbing and storing) greenhouse gases, managed forests can play an even more powerful role.

Younger trees absorb more CO2 to fuel their rapid growth compared to older trees with stored carbon reserves. Managed forests, with regular thinning and replanting of trees, ensure there are plentiful numbers of these carbon-hungry young trees around the world.

Read the original 5 things you never knew about forests here.

Longleaf Pine: how wood product markets help to conserve a protected species

Longleaf pine forests were once a dominant ecosystem across the Southern US’ Gulf and Atlantic states, spanning from the east coast in Virginia as far west as Texas. However, centuries of overuse and conversion to agriculture and to faster growing pine species mean today less than 5% of the estimated 90 million acres remain.

Restoration of the longleaf pine savanna is now underway and the careful management of both public and private forests is key to preserving this ecosystem. Wood product and biomass markets play an important role in this, ensuring there is an economic incentive for landowners to plant high-value longleaf pines and manage them in a way that promotes conservation.

An ecosystem shaped by fire

The ancient abundance of longleaf pines across the southern US owes to their highly pyrophytic nature, meaning they are resistant to fire. This allowed the trees to survive both the naturally occurring forest fires from summer thunderstorms and those started as land management by native Americans. These regular fires help give the longleaf savanna its distinctive features, with a limited canopy providing ample sunlight and allowing grasses and herbs to grow in the nitrogen-rich soil.

As colonial settlements expanded across North America, the long straight timber offered by the pines, as well as the resin and turpentine, made these forests a valuable resource. Longleaf pine ecosystems reached a depleted state.

The restoration push

Today, America’s Longleaf Restoration Initiative (ALRI) is taking strides to restore the species. The collaborative effort between public and private sector partners has set a 15-year goal of increasing longleaf acreage from 3.4 million to 8.0 million acres by 2025. 

These ecosystems are currently home to an estimated 900 endemic plants and 29 federally listed species including the red-cockaded woodpecker, gopher tortoise and indigo snake.

Restoring the environment in which the flora and fauna can flourish is not as simple as planting large numbers of longleaf pine trees.

“Conservation efforts must focus on not only the planting of the pine, but also the restoration, development, and maintenance of the pine savanna ecosystem,” says Kyla Cheynet, a forest ecologist at Drax Biomass. “This system requires predictable disturbance to maintain the open canopy and rich herbaceous vegetation.”

The role of the wood product market

These disturbances include prescribed fires and the careful harvesting of trees to ensure the landscape maintains its open canopy that allows plenty of sunlight to reach the grasses and other vegetation along the forest floor.

The ALRI’s 2016 report highlighted the importance of thinning and prescribed fires in conserving longleaf savanna. It found that while new planting of longleaf pines declined slightly (8%) from 2015, the wildlife quality, plant diversity and overall health of forests improved by removing competing tree species and allowing more sunlight to enter the forest.

Harvesting or thinning longleaf pine forests provides a small percentage of the fibre used to manufacture compressed wood pellets used at Drax Power Station, but these markets help to incentivise responsible forest management and offer a source of profit for landowners. These revenue-generating practices are crucial to ensuring the continued survival of longleaf pine forests by preventing them from being converted to agricultural land or lost to development.

How sustainable biomass crosses the Atlantic to power the nation

In the UK, we’re so accustomed to using electricity we rarely think of the journey it takes from power station to plug.

In fact, electricity must travel across a network of cables, wires and substations before it makes it from the power stations generating it to the homes and businesses using it. At Drax Power Station, which supplies 16% of Great Britain’s renewable power, there’s another journey that takes place even before the electricity leaves the power station.

This journey – the journey of more than half of the compressed wood pellet fuel Drax uses to generate electricity – has its origins in the expanse of forestland in the southern USA.

From forest to fuel

The journey starts in the huge, working forests of the southern states of the USA where low value wood – such as the thinnings cleared as part of a forests’ growing cycle – is collected in a responsible and sustainable way to make high density wood pellets, which Drax Power Station uses to produce more than 60% of its electricity.

Drax Group’s own pellet manufacturer, Drax Biomass, produces around 15% of the power station’s renewable fuel. After pelletisation locally at its Amite and Morehouse facilities, located in Louisiana and Mississippi respectively, the biomass is transported to Drax Transit at the Port of Greater Baton Rouge, on the Mississippi River. From Morehouse, trains made up of closed-top grain cars, each capable of carrying 120 tonnes, transport the pellets 221 miles to Baton Rouge. At Amite, just 60 miles from Baton Rouge, fuel-efficient trucks carry 25-tonne loads between plant and port.

Once at the port, the truck and train cargoes are unloaded into one of two biomass storage domes – each holding 40,000 tonnes of biomass – before being loaded into the ships for their transatlantic journey.

A boat arrives at Peel Ports in Liverpool

From port to port

Drax uses a range of ships to carry the pellets on their 8,000-mile journey to the UK, ranging from big ‘Coastal’ ships, capable of hauling 20,000 tonnes, to truly massive Panamax ships, more than a quarter of a kilometre in length and capable of carrying up to 80,000 tonnes.

The ships leave the port and spend 24 hours travelling the 200 miles down the Mississippi River into the Gulf of Mexico, around Florida, and into the Atlantic. From here, it’s a 19-day voyage to reach ports in the UK. To put that into perspective, it took Columbus more than two months to make his first trip across the Atlantic.

The ships pull into ports in Tyne, Hull, Immingham and Liverpool, where they are unloaded. At the bespoke biomass port facility at Peel Ports in Liverpool an Archimedean screw removes the pellets from the ship’s holds and transports them onto a conveyer belt, which loads them onto trains. These four ports can process up to 12 million tonnes of biomass every year, combined.

From port to power station

Like the stateside journey, Drax uses trains to carry its cargo from port to power plant. The difference on the UK side, however, is that the UK trains were designed specifically to carry biomass wood pellets. Clever design and engineering was used to maximise the space inside each carriage and ensure the trains carry large loads despite UK rail restrictions.

These trains carry the pellets across the country (and even over the Pennines for trains coming from Liverpool) to Drax Power Station in Selby, North Yorkshire. Roughly 14 trains arrive at the plant every day and collectively unload about 20,000 tonnes of pellets every day, from Monday to Saturday. A system of conveyor belts carry these pellets to one of Drax’s four giant biomass storage domes, each capable of housing about 80,000 tonnes of pellets.

Then, when needed, the conveyor system takes the pellets on their final journey: into the furnace. The pellets are combusted, which boils water to create steam, which turns a turbine connected to a generator, which then feeds electricity to the national grid. The electricity travels across miles of cables, and wires, through substations and transformers, and finally into your power socket.

An engineer looking into a Drax furnace

Long journey, low emissions

Despite the number of miles travelled, the journey of biomass is tracked and managed to ensure the Drax Power Station supply chain is as low-carbon as possible. The result is that, even with all supply chain emissions considered, the power generated has a carbon emissions profile that is more than 80% lower than coal.

It might be one of the most impressive supply chains involved in powering this island – but it’s not the only one to travel thousands of miles. The journey of biomass to England joins liquefied natural gas (LNG) shipped from the Middle East, coal from Colombia and solar panels manufactured in China – imports that ensure we have readily available access to power on our shores.

Sustainability, certified

Drax Morehouse woodchip truck

Of all the changes to Drax Power Station over the last decade, perhaps the biggest is one you can’t see. Since converting three of its six generating units from coal to run primarily on compressed wood pellets, Drax has reduced those units’ greenhouse gas (GHG) emissions by over 80%.

And while this is a huge improvement, it would mean nothing if the biomass with which those reductions are achieved isn’t sustainably sourced.

For this reason, Drax works with internationally-recognised certification programmes that ensure suppliers manage their forests according to environmental, social and economic criteria.

Thanks to these certification programmes, Drax can be confident it is not only reducing GHG emissions, but supporting responsible forestry from wherever wood fibre is sourced.

Sustainability certifications

The compressed wood pellets used at Drax Power Station come from various locations around the world, so Drax relies on a number of different forest certification programmes, the three main ones being the Sustainable Forest Initiative (SFI), Forest Stewardship Council® (FSC®)1 and the Programme for the Endorsement of Forest Certification (PEFC).

The programmes share a common goal of demonstrating responsible forest management, but adoption rates vary by region. European landowners and regulators are most familiar with the FSC and national PEFC standards, while North American landowners generally prefer SFI and American Tree Farm System (also members of the PEFC family). In instances in which Drax sources wood pellets carrying these certifications, or in instances in which Drax purchase pellets sourced from certified forests, these certifications offer an additional degree of assurance that the pellets are sustainable.

Over 50% of the pellets used at Drax Power Station come from the southern USA, where SFI and American Tree Farm System are the most widely implemented certification programmes. Overall adoption levels in this region are relatively modest. However, the SFI offers an additional level of certification that can be implemented by wood-procuring entities, such as sawmills, pulp mills and pellet mills.

This programme is referred to as SFI Fiber Sourcing, and to obtain it, participants must demonstrate that the raw material in their supply chains come from legal and responsible sources. These sources may or may not include certified forests. The programme also includes requirements related to biodiversity, water quality, landowner outreach and use of forest management and harvesting professionals. Together, these certification systems have long contributed to the improvement of forest management practices in a region that provides Drax with a significant proportion of its pellets.

And since the SFI and ATFS programmes are endorsed by PEFC, North American suppliers have a pathway for their region’s sustainable forest management practices to be recognised by European stakeholders.

These certification programmes have been in use for many years. But with recent growth in the market for wood pellets, a new certification system has emerged to deal specifically with woody biomass.

Trees locked up in a bundle

New kid on the block

The Sustainable Biomass Program (SBP) was set up in 2013 as a certification system to provide assurance that woody biomass is sourced from legal and sustainable sources. But rather than replacing any previous forest certification programmes, it builds on them.

For example, SBP recognises the evidence of sustainable forest management practices gathered under these other programmes. However, the PEFC, SFI and FSC programmes do not include requirements for reporting GHG emissions, a critical gap for biomass generators as they are obligated to report these emissions to European regulators. SBP fills this gap by creating a framework for suppliers to report their emissions to the generators that purchase their pellets.

When a new entity, such as a wood pellet manufacturer, first seeks certification under SBP, that entity is required to assess its supply base.

Feedstock which has already been certified by another established certification programme (SFI, FSC®, PEFC or PEFC approved schemes) is considered SBP-compliant.

All other feedstock must be evaluated against SBP criteria, and the wood pellet manufacturer must carry out a risk assessment to identify the risk of compliance against each of the 38 SBP indicators.

If during the process a specific risk is identified, for example to the forest ecosystem, the wood pellet manufacturer must put in place mitigation measures to manage the risk, such that it can be considered to be effectively controlled or excluded.

These assessments are audited by independent, third party certification bodies and scrutinised by an independent technical committee.

In conducting the risk assessment, the wood pellet manufacturer must consult with a range of stakeholders and provide a public summary of the assessment for transparency purposes.

Sustainable energy for the UK

Counting major energy companies including DONG Energy, E.ON and Drax as members, the SBP has quickly become an authoritative voice in the industry. At the end of 2016, the SBP had 74 certificate holders across 14 countries – including Drax’s pellet manufacturing arm, Drax Biomass, in Mississippi and Louisiana.

It’s a positive step towards providing the right level of certification for woody biomass, and together with the existing forestry certifications it provides Drax with the assurance that it is powering the UK using biomass from legal and sustainable sources.

Like the fast-reducing carbon dioxide emissions of Britain’s power generation sector, it’s a change you can’t see, but one that is making a big difference.

Read the Drax principles for sustainable sourcing.

1 Drax Power Ltd FSC License Code: FSC® – C119787

The biomass carbon story

There is an important difference between carbon dioxide (CO2) emitted from coal (and other fossil fuels) and CO2 emitted from renewable sources. Both do emit CO2 when burnt, but in climate change terms the impact of that CO2 is very different.

To understand this difference, it helps to think small and scale up. It helps to think of your own back garden.

One tree, every year for 30 years

Imagine you are lucky enough to have a garden with space for 30 trees. Three decades ago you decided to plant one tree per year, every year. In this example, each tree grows to maturity over thirty years so today you find yourself with a thriving copse with 30 trees at different stages of growth, ranging from one year to 30 years old.

At 30 years of age, the oldest has now reached maturity and you cut it down – in the spring, of course, before the sap rises – and leave the logs to dry over the summer. You plant a new seedling in its place. Through the summer and autumn the 29 established trees and the new seedling you planted continue to grow, absorbing carbon from the atmosphere to do so.

Winter comes and when it turns cold and dark you burn the seasoned wood to keep warm. Burning it will indeed emit carbon to the atmosphere. However, by end of the winter, the other 29 trees, plus the sapling you planted, will be at exactly the same stage of growth as the previous spring; contain the same amount of wood and hence the same amount of carbon.

As long as you fell and replant one tree every year on a 30-year cycle the atmosphere will see no extra CO2 and you’ll have used the energy captured by their growth to warm your home. Harvesting only what is grown is the essence of sustainable forest management.

If you didn’t have your seasoned, self-supplied wood to burn you might have been forced to burn coal or use more gas to heat your home. Over the course of the same winter these fuels would have emitted carbon to the atmosphere which endlessly accumulates – causing climate change.

Not only does your tree husbandry provide you with an endlessly renewable supply of fuel but you also might enjoy other benefits such as the shelter your trees provide and the diversity of wildlife they attract.

Mushroom - Brown cap boletus in autumn

No added carbon

This is a simplified example, but the principles hold true whether your forest contains 30 trees or 300 million – the important point is that with these renewable carbon emissions, provided you take out less wood than is growing and you at least replace the trees you take out, you do not add new carbon to the atmosphere. That is not true with fossil fuels.

It is true that you could have chosen not to have trees. You could instead build a wind turbine or install solar panels on your land. That would be a perfectly reasonable choice but you’ll still need to use the coal at night when the sun doesn’t shine or when the wind isn’t blowing. Worst of all you don’t get all the other benefits of a thriving forest – its seasonal beauty and the habitat that’s maintained for wildlife.

Of course, the wood Drax needs doesn’t grow in our ‘garden’. We bring it many miles from areas where there are large sustainably managed forests and we carefully account for the carbon emissions in the harvesting, processing and transporting the fuel to Drax. That’s why we ‘only’ achieve more than 80% carbon savings compared to coal.

Building a 21st century port

In its long history, the Port of Liverpool has dealt with a number of industries. It’s a port characterised by its ability to adapt to the needs of the time. In 1715 it emerged as one of the world’s first ever wet docks. In the 18th century it was used as a hub for the slave trade.

When slavery was abolished in the early 19th century, Liverpool switched to bringing in the goods of the thriving Empire, such as cotton. When goods like cotton dried up, it switched to the fuel of the Industrial Revolution: coal.

Now as the world (and the UK government) moves away from fuels like coal and towards lower-carbon and renewable resources, the Port of Liverpool needed to adapt once again.

Gary Hodgson, Chief Operating Officer at Peel Ports, explains: “About three years ago everyone was asking, ‘What happens after coal?’”

Biomass silos at the Port of Liverpool

What happens after coal?

Peel Ports is one of the biggest operators of Liverpool’s shipping infrastructure, including Liverpool Port. Seeing that the future of coal was finite, it recognised there was a need for a port that could bring in alternative, renewable fuels.

At the same time Drax was looking for a logistics partner to facilitate the importing of compressed wood pellets. Since 2009 Drax Power Station had begun a process of upgrading its coal-fired boilers to run on sustainable biomass, sourced from huge, well-established working forests. More than this, it had plans to set up its own pellet manufacturing plants in the US South and needed to import large quantities of wood pellets.

The relationship with Peel Ports and Liverpool was obvious. This began a £100 million investment that helped transform the region’s port-station transport infrastructure.

“It’s about working in partnerships with companies,” says Hodgson. “Working this way helps develop solutions that really work.”

The central element of the partnership between Drax and Peel Ports was a radical redesigning of the technical infrastructure. Not only do compressed wood pellets have fundamentally different physical properties to other fuels like coal, they are more combustible and need to be handled safely.

For the three-million-tonne-capacity facility that Peel Ports and Drax wanted to build, innovative supply chain solutions had to be developed.

A tool used to transfer compressed biomass pellets

Shifting biomass in bulk

The first challenge was getting the high-density pellets off giant ships. For this, Peel and Drax designed a solution that uses an Archimedean screw – a long tube with a spiral winding up the inside that allows liquids, or materials that can behave like a liquid (like wood pellets), to defy gravity and travel upwards.

At the top of the screw, the pellets are emptied onto a conveyor belt and carried to one of three purpose-built silos tailored to safely storing thousands of tonnes of biomass.

Here the pellets wait until another conveyor belt deposits them onto specially-design biomass trains where they are transported across the peaks of the Pennines to Drax Power Station near Selby in North Yorkshire.

Each step at the port is automated, designed with supreme efficiency in mind by a team of Drax and Peel Port engineers. End-to-end, port to power station, the whole process can take as little as 12 hours.

Drax biomass ship in the Port of Liverpool

A new chapter for the north

In the varied history of the Port of Liverpool the new facility is another chapter, one that is helping transform the logistics infrastructure and the economic growth of the North West.

Now open and operational, the facility directly employs 50 people – around 500 additional contractors have worked on the project during its construction and development. More than that, it’s an investment in the country’s energy future. It secures a fourth port for Drax –  three others are on the east coast – helping with security of supply.

“We made this investment because we recognised this as the future of the energy mix of the country,” Hodgson explain. “We can’t just rely on one form of power – there has to be an energy mix and we see biomass as a key part of that.”

How one company helped transform the biomass business

Westfield terminal

If asked to picture Canada, its beautiful forests often spring to mind. In fact, 38% of the country is covered by them. Little wonder that Canada has one of the world’s biggest lumber industries. But all that lumber milling means a lot of sawdust.

It was in this sawdust, and the other ‘waste’ products the milling process creates, that one fledgling Canadian company spotted an opportunity.

Making the most of waste

Started by two brothers in the 1980s, Pinnacle originally made animal feed for farmers – compressed pellets of grass and grain.

Then, in the late Eighties, after hearing about wood pellet production in Scandinavia, and taking a look at all the sawmilling residues being burned up around them, they had an idea for a new direction.

At the time the Canadian government was looking to make the sawmilling industry a lot cleaner and more sustainable. “There was a lot of fibre around that needed to find a home,” explains Vaughan Bassett, a senior executive with the company.

Canada needed a way to put to good use materials that were previously just thrown away or even burnt out in the open, releasing greenhouse gas emissions, and wood pellets seemed like a natural fit. Even better, because there was so much waste fibre around at the time, Pinnacle was able to get its raw material for free and help to avoid the unnecessary emissions. All it had to do was pick it up and take it away.

Pinnacle Lavington grand opening

Finding a new business model

Making the transition from feed pellets to wood pellets involved a lot of trial and error.

“There was a lot of entrepreneurial spirit that went into this thing,” says Bassett. “It was untried, untested, unknown and there was no real market. It was just a couple of entrepreneurs trying stuff out.”

Initially, Pinnacle produced its wood pellets for local domestic markets – people looking to heat their homes, local businesses, and schools that used wood burners. This is a particularly convenient and efficient form of fuel for communities in off-the-grid, remote areas of Canada. But Pinnacle was keen to grow and make an even greater impact.

Rising demand for sustainability

By the early 2000s, some in the power generation industry were starting to rethink their long-term futures, looking to shift from fossil fuels like coal to cleaner alternatives in order to meet the challenges of sustainable energy production.

Central to Pinnacle’s business is a commitment to sustainability – something being based in Canada, where forest management is particularly advanced, makes possible. Being owned by the Crown, there are very tight controls over how Canadian forests are run – and how the trees are used.

“We’ve probably got the most sustainable wood fibre in the world. The numbers are just mad. Something like 95% of all the forests in Canada are ‘forest management certified’, which is unbelievable. Look at the next best country and it’s probably nearer 30%,” says Bassett, “It’s left us with an incredible asset that keeps growing every year. The industry never takes more wood than what grows.”

Indeed, carefully managed forestry is key to environmental sustainability. Fully-grown older trees don’t absorb as much CO2, so replacing them with younger, growing trees that do, can benefit the environment. Meanwhile, the waste product of sawmilling is converted into biomass, which produces further benefits by reducing reliance on fossil fuels.

Pinnacle and Drax: A sustainable partnership

Pinnacle first started supplying Drax with compressed wood pellets in 2009, marking a turning-point for the company. “Since 2011, our production has doubled,” says Bassett.

Pinnacle now contracts a fleet of ships and has its own dedicated port facility. Each vessel can transport 60,000 tonnes. Given that Drax uses around 16,000 tonnes a day with two of its three biomass units at full capacity, one shipment keeps a third of the huge power station in North Yorkshire going for nearly four days.

“Pinnacle now produces in the region of 1.5m tonnes of pellets a year, about half of which goes to Drax. So they’re a very important part of what we do,” says Bassett.

Read the Burns Lake and Houston pellet plant catchment area analysis here, part of a series of catchment area analyses around the forest biomass pellet plants supplying Drax Power Station with renewable fuel. Others in the series can be found here