Tag: BECCS (bioenergy with carbon capture and storage)

Global collaboration
is key to tackling
the climate crisis

Leaders from 40 countries are meeting today, albeit virtually, as part of President Joe Biden’s Leaders’ Summit on Climate. The event provides an opportunity for world leaders to reaffirm global efforts in the fight against climate change, set a clear pathway to net zero emissions, while creating jobs and ensuring a just transition.

Since taking office President Biden has made bold climate commitments and brought the United States back into the Paris Agreement. Ahead of the two-day summit, he announced an ambitious 2030 emissions target and new Nationally Determined Contributions. The US joins other countries that have announced significant reduction goals. For example, the EU committed to reduce its emissions by at least 55%, also South Korea, Japan and China have all set net-zero targets by mid-century.

Here in the UK, Prime Minister Boris Johnson this week outlined new climate commitments that will be enshrined in law. The ambitious new targets will see carbon emissions cut by 78% by 2035, almost 15 years earlier than previously planned. If delivered, this commitment which is in-line with the recommendations of the Climate Change Committee’s sixth carbon budget will put the UK at the forefront of climate action, and for the first time the targets include international aviation and shipping.

What makes climate change so difficult to tackle is that it requires collaboration from many different parties on a global scale never seen before. As a UK-North American sustainable energy company, with communities on both sides of the Atlantic, at Drax we are keenly aware of the need for thinking that transcends borders, creating a global opportunity for businesses and governments to work together towards a shared climate goal. That’s why we joined other businesses and investors in an open letter supporting the US government’s ambitious climate actions.

Collaboration between countries and industries

It’s widely recognised that negative emissions technologies will be key to global efforts to combat climate change.

At Drax we’re pioneering the negative emissions technology bioenergy with carbon capture and storage (BECCS) at our power station in North Yorkshire, which when up and running in 2027 will capture millions of tonnes of carbon dioxide (CO2) per year, sending it for secure storage, permanently locking it away deep under the North Sea.

Experts on both sides of the Atlantic consider BECCS essential for reaching net zero. The UK’s Climate Change Committee says it will play a major role in removing CO2 emissions that will remain in the UK economy after 2050 from industries such as aviation and agriculture that will be difficult to fully decarbonise. Meanwhile, a report published last year by New York’s Columbia University revealed that rapid development of BECCS is needed within the next 10 years in order to curb climate change and a recent report from Baringa, commissioned by Drax, showed it will be a lot more expensive for the UK to reach its legally binding fifth carbon budget between 2028 and 2031 without BECCS.

A shared economic opportunity

Globally as many as 65 million well-paid jobs could be created through investment in clean energy systems. In the UK, BECCS and negative emissions are not just essential in preventing the impact of climate change but will also be a key component of a post-Covid economy.

Government and private investments in clean energy technologies can create thousands of well-paid jobs, new careers, education opportunities and upskill workforces. Developing BECCS at Drax Power Station, for example, would support around 17,000 jobs during the peak of construction in 2028, including roles in construction, local supply chains and the wider economy. It would also act as an anchor project for the Zero Carbon Humber initiative, which aims to create the world’s first net zero industrial cluster. Developing a carbon capture, usage, and storage (CCUS) and hydrogen industrial cluster could spearhead the creation and support of tens of thousands of jobs across the Humber region and more than 200,000 around the UK in 2039.

Under the Humber Bridge

Additional jobs would be supported and created throughout our international supply chain. This includes the rail, shipping and forestry industries that are integral to rural communities in the US South and Western Canada.

A global company

As a British-North American company, Drax embodies the positive impact that clean energy investments have. We directly employ 3,400 people in the US, Canada, and the UK, and indirectly support thousands of families through our supply chains on both sides of the Atlantic. Drax is strongly committed to supporting the communities where we operate by investing in local initiatives to support the environment, jobs, education, and skills.

From the working forests of the US South and Western Canada to the Yorkshire and Humber region, and Scotland, we have a world-leading ambition to be carbon negative by 2030. At Drax, we believe the challenge of climate change is an opportunity to improve the environment we live in. We have reduced our greenhouse gas emissions by over 80% and transformed into Europe’s largest decarbonisation project. Drax Power Station is the most advanced BECCS project in the world and we stand ready to invest in this cutting-edge carbon capture and removal technology. We can then share our expertise with the rest of the world – a world where major economies are committing to a net zero future and benefiting from a green economic recovery.

If we are to reach the targets set in Paris, global leaders must lock in this opportunity and make this the decade of delivery.

Standing together
against climate
change

Global leadership illustration

Tackling climate change requires global collaboration. As a UK-US sustainable energy company, with communities on both sides of the Atlantic, we at Drax are keenly aware of the need for thinking that transcends countries and borders.

Joe Biden has become the 46th President of my native country at a crucial time to ensure there is global leadership and collaboration on climate change. Starting with re-joining the Paris Agreement, I am confident that the new administration can make a significant difference to this once-in-a-lifetime challenge.

This is why Drax and our partners are mobilising a transatlantic coalition of negative emissions producers. This can foster collaboration and shared learning between the different technologies and techniques for carbon removal that are essential to decarbonise the global economy.

Biomass storage domes at Drax Power Station in North Yorkshire at sunset

Biomass storage domes at Drax Power Station in North Yorkshire

Whilst political and technical challenges lie ahead, clear long-term policies that spur collaboration, drive innovation and enable technologies at scale are essential in achieving the UK and US’ aligned targets of reaching net zero carbon emissions by 2050.

Collaboration between countries and industries

What makes climate change so difficult to tackle is that it requires collaboration from many different parties on a scale like few other projects. This is why the Paris Agreement and this year’s COP26 conference in Glasgow are so vital.

Sustainable biomass wood pellets being safely loaded at the Port of Greater Baton Rouge onto a vessel destined for Drax Power Station

Our effort towards delivering negative emissions using bioenergy with carbon capture and storage (BECCS) is another example of ambitious decarbonisation that is most impactful as part of an integrated, collaborative energy system. The technology depends upon sustainable forest management in regions, such as the US South where our American communities operate. Carbon capture using sustainable bioenergy will help Drax to be carbon negative by 2030 – an ambition I announced at COP25, just over a year ago in Madrid.

Will Gardiner at Powering Past Coal Alliance event in the UK Pavilion at COP25 in Madrid

Will Gardiner announcing Drax’s carbon negative ambition at COP25 in Madrid (December 2019).

Experts on both sides of the Atlantic consider BECCS essential for net zero. The UK’s Climate Change Committee says it will play a major role in tackling carbon dioxide (CO2) emissions that will remain in the UK economy after 2050, from industries such as aviation and agriculture that will be difficult to fully decarbonise. Meanwhile, a report published last year by New York’s Columbia University revealed that rapid development of BECCS is needed within the next 10 years in order to curb climate change.

A variety of negative emissions technologies are required to capture between 10% and 20% of the 35 billion metric tonnes of carbon produced annually that the International Energy Agency says is needed to prevent the worst effects of climate change.

We believe that sharing our experience and expertise in areas such as forestry, bioenergy, and carbon capture will be crucial in helping more countries, industries and businesses deploy a range of technologies.

A formal coalition of negative emissions producers that brings together approaches including land management, afforestation and reforestation, as well as technical solutions like direct air capture (DAC), as well as BECCS, would offer an avenue to ensure knowledge is shared globally.

Direct air capture (DAC) facility

Direct air capture (DAC) facility

It would also offer flexibility in countries’ paths to net zero emissions. If one approach under-delivers, other technologies can work together to compensate and meet CO2 removal targets.

As with renewable energy, working in partnership with governments is essential to develop these innovations into the cost-effective, large scale solutions needed to meet climate targets in the mid-century.

A shared economic opportunity

I agree whole heartedly that a nation’s economy and environment are intrinsically linked – something many leaders are now saying, including President Biden. The recently approved US economic stimulus bill, supported by both Republicans and Democrats in Congress and which allocates $35 billion for new clean energy initiatives, is a positive step for climate technology and job creation.

Globally as many as 65 million well-paid jobs could be created through investment in clean energy systems. In the UK, BECCS and negative emissions are not just essential in preventing the impact of climate change, but are also a vital economic force as the world begins to recover from the effects of COVID-19.

Engineer inside the turbine hall of Drax Power Station

Government and private investments in clean energy technologies can create thousands of well-paid jobs, new careers, education opportunities and upskill workforces. Developing BECCS at Drax Power Station, for example, would support around 17,000 jobs during the peak of construction in 2028, including roles in construction, local supply chains and the wider economy.

Additional jobs would be supported and created throughout our international supply chain. This includes the rail, shipping and forestry industries that are integral to rural communities in the US South.

We are also partnered with 11 other organisations in the UK’s Humber region to develop a carbon capture, usage and storage (CCUS) and hydrogen industrial cluster with the potential to spearhead creating and supporting more than 200,000 jobs around the UK in 2039.

The expertise and equipment needed for such a project can be shared, traded and exported to other industrial clusters around the world, allowing us to help reach global climate goals and drive global standards for CCUS and biomass sustainability.

Clear, long-term policies are essential here, not just to help develop technology but to mitigate risk and encourage investment. These are the next crucial steps needed to deploy negative emissions at the scale required to impact CO2 emissions and lives of people.

Engineer at BECCS pilot project within Drax Power Station

At Drax we directly employ almost 3,000 people in the US and UK, and indirectly support thousands of families through our supply chains on both sides of the Atlantic. Drax Power Station is the most advanced BECCS project in the world and we stand ready to invest in this cutting-edge carbon capture and removal technology. We can then share our expertise with the United States and the rest of the world – a world where major economies are committing to a net zero future and benefiting from a green economic recovery.

Committing to a net zero power system as part of COP26

Dear Prime Minister, Chancellor, COP26 President and Minister for Energy and Clean Growth,

We are a group of energy companies investing tens of billions in the coming decade, deploying the low carbon infrastructure the UK will need to get to net zero and drive a green recovery to the COVID-19 crisis.

We welcome the leadership shown on the Ten Point Plan for a Green Industrial Revolution, and the detailed work going on across government to deliver a net zero economy by 2050. We are writing to you to call on the Government to signal what this will mean for UK electricity decarbonisation by committing to a date for a net zero power system.

Head of BECCS inspects pilot plant within Drax Power Station's CCUS Incubation Unit

Head of BECCS Carl Clayton inspects pipes at the CCUS Incubation Area, Drax Power Station

The electricity sector will be the backbone of our net zero economy, and there will be ever increasing periods where Great Britain is powered by only zero carbon generation. To support this, the Electricity System Operator is putting in place the systems, products and services to enable periods of zero emissions electricity system operation by 2025.

Achieving a net zero power system will require government to continue its efforts in key policy areas such as carbon pricing, which has been central in delivering UK leadership in the move away from coal and has led to UK electricity emissions falling by over 63% between 2012 and 2019 alone.

It is thanks to successive governments’ commitment to robust carbon pricing that the UK is now using levels of coal in power generation last seen 250 years ago – before the birth of the steam locomotive. A consistent, robust carbon price has also unlocked long term investment low-carbon power generation such that power generated by renewables overtook fossil fuel power generation for the first time in British history in the first quarter of 2020.

Yet, even with the demise of coal and the progress in offshore wind, more needs to be done to drive the remaining emissions from electricity as its use is extended across the economy.

In the near-term, in combination with other policies, continued robust carbon pricing on electricity will incentivise the continued deployment of low carbon generation, market dispatch of upcoming gas-fired generation with Carbon Capture and Storage (CCS) projects and the blending of low carbon hydrogen with gas-fired generation. Further forward, a robust carbon price can incentivise 100% hydrogen use in gas-fired generation, and importantly drive negative emissions to facilitate the delivery of a net zero economy.

Next year, the world’s attention will focus on Glasgow and negotiations crucial to achieving our climate change targets, with important commitments already made by China, the EU, Japan and South Korea amongst others. An ambitious 2030 target from the UK will help kickstart the Sprint to Glasgow ahead of the UK-UN Climate Summit on 12 December.

Electricity cables and pylon snaking around a mountain near Cruachan Power Station in the Highlands

Electricity cables and pylon snaking around a mountain near Cruachan Power Station, Drax’s flexible pumped storage facility in the Highlands

2030 ambition is clearly needed, but to deliver on net zero, deep decarbonisation will be required. Previous commitments from the UK on its coal phase out and being the first major economy to adopt a net zero target continue to encourage similar international actions. To build on these and continue UK leadership on electricity sector decarbonisation, we call on the UK to commit to a date for a net zero power system ahead of COP26, to match the commitment of the US President-elect’s Clean Energy Plan. To ensure the maximum benefit at lowest cost, the chosen date should be informed by analysis and consider broad stakeholder input.

Alongside near-term stability as the UK’s carbon pricing future is determined, to meet this commitment Government should launch a consultation on a date for a net zero power system by the Budget next year, with a target date to be confirmed in the UK’s upcoming Net Zero Strategy. This commitment would send a signal to the rest of the world that the UK intends to maintain its leadership position on climate and to build a greener, more resilient economy.

To:

  • Rt Hon Boris Johnson MP, Prime Minister of the United Kingdom
  • Rt Hon Rishi Sunak MP, Chancellor of the Exchequer
  • Rt Hon Alok Sharma MP, Secretary of State for Business, Energy and Industrial Strategy and UNFCCC COP26 President
  • Rt Hon Kwasi Kwarteng MP, Minister for Business, Energy and Clean Growth

Signatories:

BP, Drax, National Grid ESO, Sembcorp, Shell and SSE

View/download letter in PDF format

 

COP26: Will countries with the boldest climate policies reach their targets?

To tackle the climate crisis, global unity and collaboration are needed. This was in part the thinking behind the Paris Agreement. It set a clear, collective target negotiated at the 2015 United Nations Climate Change Conference and signed the following year: to keep the increase in global average temperatures to well below 2 degrees Celsius above pre-industrial levels.

In November 2021, COP26 will see many of the countries who first signed the Paris Agreement come together in Glasgow for the first ‘global stocktake’ of their environmental progress since its creation.

COP26 will take place at the SEC in Glasgow

Already delayed for a year as a result of the pandemic, COVID-19 and its effects on emissions is likely to be a key talking point. So too will progress towards not just the Paris Agreement goals but those of individual countries. Known as ‘National Determined Contributions’ (NDCs), these sit under the umbrella of the Paris Agreement goals and set out individual targets for individual countries.

With many countries still reeling from the effects of COVID-19, the question is: which countries are actually on track to meet them?

What are the goals?

The NDCs of each country represent its efforts and goals to reduce national emissions and adapt to the impacts of climate change. These incorporate various targets, from decarbonisation and forestry to coastal preservation and financial aims.

While all countries need to reduce emissions to meet the Paris Agreement targets, not all have an equally sized task. The principle of differentiated responsibility acknowledges that countries have varying levels of emissions, capabilities and economic conditions.

The Universal Ecological Fund outlined the emissions breakdown of the top four emitters, showing that combined, they account for 56% of global greenhouse gas emissions. China is the largest emitter, responsible for 26.8%, followed by the US which contributes 13.1%. The European Union and its 28 member states account for nine per cent, while India is responsible for seven per cent of all emissions.

These nations have ambitious emissions goals, but are they on track to meet them?

China

Traffic jams in the rush hour in Shanghai Downtown, contribute to high emissions in China.

By 2030, China pledged to reach peak carbon dioxide (CO2), increase its non-fossil fuel share of energy supply to 20% and reduce the carbon intensity – the ratio between emissions of CO2 to the output of the economy – by 60% to 65% below 2005 levels.

COVID-19 has increased the uncertainty of the course of China’s emissions. Some projections show that emissions are likely to grow in the short term, before peaking and levelling out sometime between 2021 and 2025. However, according to the Climate Action Tracker it is also possible that China’s emissions have already peaked – specifically in 2019. China is expected to meet its non-fossil energy supply and carbon intensity pledges.

United States

The forecast for the second largest emitter, the US, has also been affected by the pandemic. Economic firm Rhodium Group has predicted that the US could see its emissions drop between 20% and 27% by 2025, meeting its target of reducing emissions by 26% to 28% below 2005 levels.

However, President Trump’s rolling back of Obama-era climate policies and regulations, his support of fossil fuels and withdrawal from the Paris Agreement (effective from as early as 4 November 2020), suggest any achievement may not be long-lasting.

The United States’ Coronavirus Aid, Relief, and Economic Security Act, known as the CARES Act, does not include any direct support to clean energy development – something that could also change in 2021.

European Union

CCUS Incubation Unit, Drax Power Station

Carl Clayton, Head of BECCS at Drax, inspects pipework in the CCUS area of Drax Power Station

The European Union and its member states, then including the UK, pledged to reduce emissions by at least 40% below 1990 levels by 2030 – a target the Climate Action Tracker estimates will be achieved. In fact, the EU is on track to cut emissions by 58% by 2030.

This progress is in part a result of a large package of measures adopted in 2018. These accelerated the emissions reductions, including national coal phase-out plans, increasing renewable energy and energy efficiency. The package also introduced legally binding annual emission limits for each member state within which they can set individual targets to meet the common goal.

The UK has not yet released an updated, independent NDC. However, it has announced a £350 million package designed to cut emissions in heavy industry and drive economic recovery from COVID-19. This includes £139 million earmarked to scale up hydrogen production, as well as carbon capture and storage (CCS) technology, such as bioenergy with carbon capture (BECCS) – essential technologies in achieving net zero emissions by 2050 and protecting industrial regions.

India

India, the fourth largest global emitter, is set to meet its pledge to reduce its emissions intensity by 33% to 35% below 2005 levels and increase the non-fossil share of power generation to 40% by 2030. What’s more, the Central Electricity Agency has reported that 64% of India’s power could come from non-fossil fuel sources by 2030.

Wind turbines in Jaisalmer, Rajasthan, India

Along with increasingly renewable generation, the implementation of India’s National Smart Grid Mission aims to modernise and improve the efficiency of the country’s energy system.

It is promising that the world’s four largest emitters have plans in place and are making progress towards their decarbonisation goals. However, tackling climate change requires action from around the entire globe. In addition to NDCs, many countries have committed to, or have submitted statements of intent, to achieve net zero carbon emissions in the coming years.

Net zero target

CountryTarget Date Status
Bhutan 🇧🇹Currently carbon negative (and aiming for carbon neutrality as it develops; pledged towards the Paris Agreement)
Suriname 🇸🇷Currently carbon negative
Denmark 🇩🇰2050In law
France 🇫🇷2050In law
Germany 🇩🇪2050In law
Hungary 🇭🇺2050In law
New Zealand 🇳🇿2050In law
Scotland 🏴󠁧󠁢󠁳󠁣󠁴󠁿2045In law
Sweden 🇸🇪2045In law
United Kingdom 🇬🇧2050In law
Bulgaria 🇧🇬2050Policy Position
Canada 🇨🇦2050Policy Position
Chile 🇨🇱2050In policy
China 🇨🇳2060Statement of intent
Costa Rica 🇨🇷2050Submitted to the UN
EU 🇪🇺2050Submitted to the UN
Fiji 🇫🇯2050Submitted to the UN
Finland 🇫🇮2035Coalition agreement
Iceland 🇮🇸2040Policy Position
Ireland 🇮🇪2050Coalition Agreement
Japan 🇯🇵2050Policy Position
Marshall Islands 🇲🇭2050Pledged towards the Paris Agreement
Netherlands 🇳🇱2050Policy Position
Norway 🇳🇴2050 in law, 2030 signal of intent
Portugal 🇵🇹2050Policy Position
Singapore 🇸🇬As soon as viable in the second half of the centurySubmitted to the UN
Slovakia 🇸🇰2050Policy Position
South Africa 🇿🇦2050Policy Position
South Korea 🇰🇷2050Policy Position
Spain 🇪🇸2050Draft Law
Switzerland 🇨🇭2050Policy Position
Uruguay 🇺🇾2030Contribution to the Paris Agreement

While the COVID-19 pandemic has disrupted short-term plans, many see it as an opportunity to rejuvenate economies with sustainability in mind. COP26, as well as the global climate summit planned for December of this year, will likely see many countries lay out decarbonisation goals that benefit both people’s lives and the planet.

What are negative emissions?

Negative emissions

What are negative emissions?

In order to meet the long-term climate goals laid out in the Paris Agreement, there is a need to not only reduce the emission of harmful greenhouse gases into the air, but actively work to remove the excess carbon dioxide (CO2) currently in the atmosphere, and the CO2 that will continue to be emitted as economies work to decarbonise.

The process of greenhouse gas removal (GGR) or CO2 removal (CDR) from the atmosphere is possible through negative emissions, where more CO2 is taken out than is being put into the atmosphere. Negative emissions can be achieved through a range of nature-based solutions or through man-made technologies designed to remove CO2 at scale.

What nature-based solutions exist to remove CO2 from the atmosphere?

One millennia-old way of achieving negative emissions is forests. Trees absorb carbon when they grow, either converting this to energy and releasing oxygen, or storing it over their lifetime. This makes forests important tools in limiting and potentially reducing the amount of CO2 in the atmosphere. Planting new forests and regenerating forests has a positive effect on the health of the world as a result.

However, this can also go beyond forests on land. Vegetation underwater has the ability to absorb and store CO2, and seagrasses can in fact store up to twice as much carbon as forests on land – an approach to negative emissions called ‘blue carbon’.

Key negative emissions facts

 

Did you know?

Bhutan is the only carbon negative country in the world – its thick forests absorb three times the amount of CO2 the small country emits.

What man-made technologies can deliver negative emissions?

Many scientists and experts agree one of the most promising technologies to achieve negative emissions is bioenergy with carbon capture and storage (BECCS). This approach uses biomass – sourced from sustainably managed forests – to generate electricity. As the forests used to create biomass absorb CO2 while growing, the CO2 released when it is used as fuel is already accounted for, making the whole process low carbon.

By then capturing and storing any CO2 emitted (often in safe underground deposits), the process of electricity generation becomes carbon negative, as more carbon has been removed from the atmosphere than has been added.

Direct air carbon capture and storage (DACCS) is an alternative technological solution in which CO2 is captured directly from the air and then transported to be stored or used. While this could hold huge potential, the technology is currently in its infancy, and requires substantial investment to make it a more widespread practice.

The process of removing CO2 from the atmosphere is known as negative emissions, because more CO2 is being taken out of the atmosphere than added into it.

How much negative emissions are needed?

According to the Intergovernmental Panel on Climate Change, negative emissions technologies could be required to capture 20 billion tonnes of carbon annually to help prevent catastrophic changes in the climate between now and 2050.

Negative emissions fast facts

Go deeper

What is carbon capture usage and storage?

Carbon capture

What is carbon capture usage and storage?

Carbon capture and storage (CCS) is the process of trapping or collecting carbon emissions from a large-scale source – for example, a power station or factory – and then permanently storing them.

Carbon capture usage and storage (CCUS) is where captured carbon dioxide (CO2) may be used, rather than stored, in other industrial processes or even in the manufacture of consumer products.

How is carbon captured?

Carbon can be captured either pre-combustion, where it is removed from fuels that emit carbon before the fuel is used, or post-combustion, where carbon is captured directly from the gases emitted once a fuel is burned.

Pre-combustion carbon capture involves solid fossil fuels being converted into a mixture of hydrogen and carbon dioxide under heat pressure. The separated CO2 is

captured and transported to be stored or used.

Post-combustion carbon capture uses the addition of other materials (such as solvents) to separate the carbon from flue gases produced as a result of the fuel being burned. The isolated carbon is then transported (normally via pipeline) to be stored permanently –  usually deep underground – or used for other purposes.

Carbon capture and storage traps and removes carbon dioxide from large sources and most of that CO2 is not released into the atmosphere.

 What can the carbon be used for?

Once carbon is captured it can be stored permanently or used in a variety of different ways. For example, material including carbon nanofibres and bioplastics can be produced from captured carbon and used in products such as airplanes and bicycles, while several start-ups are developing methods of turning captured CO2 into animal feed.

Captured carbon can even assist in the large-scale production of hydrogen, which could be used as a carbon-neutral source of transport fuel or as an alternative to natural gas in power generation.

Key carbon capture facts

Where can carbon be stored?

Carbon can be stored in geological reserves, commonly naturally occurring underground rock formations such as unused natural gas reservoirs, saline aquifers, or ‘unmineable’ coal beds. The process of storage is referred to as sequestration.

The underground storage process means that the carbon can integrate into the earth through mineral storage, where the gas chemically reacts with the minerals in the rock formations and forms new, solid minerals that ensure it is permanently and safely stored.

Carbon injected into a saline aquifer dissolves into the water and descends to the bottom of the aquifer in a process called dissolution storage.

According to the Global CCS Institute, over 25 million tonnes of carbon captured from the power and industrial sectors was successfully and permanently stored in 2019 across sites in the USA, Norway and Brazil. 

What are the benefits of carbon storage?

CO2 is a greenhouse gas, which traps heat in our atmosphere, and therefore contributes to global warming. By capturing and storing carbon, it is being taken out of the atmosphere, which reduces greenhouse gas levels and helps mitigate the effects of climate change.

Carbon capture fast facts

  • CCUS is an affordable way to lower CO2 emissions – fighting climate change would cost 70% more without carbon capture technologies
  • The largest carbon capture facility in the world is the Petra Nova plant in Texas, which has captured a total of 5 million tonnes of CO2, since opening in 2016
  • Drax Power Station is trialling Europe’s biggest bioenergy carbon capture usage and storage project (BECCS), which could remove and capture more than 16 million tonnes of CO2 a year by the mid 2030s, delivering a huge amount of the negative emissions the UK needs to meet net zero

Go deeper

 

Button: What are negative emissions?

What is decarbonisation?

Decarbonisation

What is decarbonisation?

Decarbonisation is the term used for the process of removing or reducing the carbon dioxide (CO2) output of a country’s economy. This is usually done by decreasing the amount of CO2 emitted across the active industries within that economy. 

Why is decarbonisation important?

Currently, a wide range of sectors – industrial, residential and transport – run largely on fossil fuels, which means that their energy comes from the combustion of fuels like coal, oil or gas.

The CO2 emitted from using these fuels acts as a greenhouse gas, trapping in heat and contributing to global warming. By using alternative sources of energy, industries can reduce the amount of CO2 emitted into the atmosphere and can help to slow the effects of climate change.

Key decarbonisation facts

Why target carbon dioxide?

 There are numerous greenhouse gases that contribute to global warming, however CO2 is the most prevalent. As of 2018, carbon levels are the highest they’ve been in 800,000 years.

The Paris Agreement was created to hold nations accountable in their efforts to decrease carbon emissions, with the central goal of ensuring that temperatures don’t rise 2 degrees Celsius above pre-industrial level.

With 195 current signatories, economies have begun to factor in the need for less investment in carbon, with the UK leading the G20 nations in decarbonising its economy in the 21st century.

How is decarbonisation carried out?

There are numerous energy technologies that aim to reduce emissions from industries, as well as those that work towards reducing carbon emissions from the atmosphere.

Decarbonisation has had the most progress in electricity generation because of the growth of renewable sources of power, such as wind turbines, solar panels and coal-to-biomass upgrades, meaning that homes and businesses don’t have to rely on fossil fuels. Other innovations, such as using batteries and allowing homes to generate and share their own power, can also lead to higher rates of decarbonisation. As the electricity itself is made cleaner, it therefore assists electricity users themselves to become cleaner in the process.

Other approaches, such as reforestation or carbon capture and storage, help to pull existing carbon from the air, to neutralise carbon output, or in some cases, help to make electricity generation – and even entire nations – carbon negative.

Alternative power options means that homes and businesses don’t have to rely on traditional carbon fuels.

What is the future of decarbonisation?

For decarbonisation to be more widely adopted as a method for combating climate change, there needs to be structural economical change, according to Deloitte Access Economics. Creating more room for decarbonisation through investing in alternative energies means that “there are a multitude of job-rich, shovel-ready, stimulus opportunities that also unlock long-term value”.

 Decarbonisation fast facts

Go deeper

Button: What is biomass?