Tag: BECCS (bioenergy with carbon capture and storage)

Carbon markets will be essential in reaching net zero – we must ensure they support high standards

Angela Hepworth, Commercial Director, Drax

In brief:

  • The voluntary carbon market will be essential in deploying engineered carbon removals technologies like Bioenergy with carbon capture and storage (BECCS), and direct air carbon capture and storage (DACS) at scale.
  • The Integrity Council for the Voluntary Carbon Market is developing a set of Core Carbon Principles (CCPs).
  • Drax support proposed principals if they’re applied in ways appropriate for engineered carbon removals.
  • Standards around additionality and the permanence of carbon removals may apply very differently to nature-based and engineered removals, something that needs to be addressed explicitly.

There’s growing recognition, in governments and environmental organisations, of the urgent need to develop high-integrity engineered carbon removals at scale if the world has any chance of meeting our collective Paris-aligned climate goals.

Bioenergy with carbon capture and storage (BECCS), and direct air carbon capture and storage (DACS) are two technologies on the cusp of deployment at scale that can remove carbon from the atmosphere and store it permanently and safely. The technology is proven, developers are bringing forward projects, and the most forward-thinking companies are actively seeking to buy removal credits from BECCS and DACS developers.

Yet there’s a risk that the frameworks being developed in the voluntary carbon market could stifle rather than support the development of engineered carbon removals.

Drax is a world-leader in the deployment of bioenergy solutions. Our goal is to produce 12 million tonnes of high-integrity, permanent CO2 removals by 2030 from its BECCS projects in the U.K. and the U.S. We support the development of rigorous standards for CO2 removals that give purchasers confidence in the integrity of the CO2 removals they’re buying. Such standards are also important in providing a clear framework for project developers to work to.

However, the market and its standards have largely developed around carbon reduction and avoidance credits, rather than removals. To create a market that can enable engineered carbon removals at scale, re-thinking is needed to create standards that are fit for purpose to tackle the climate emergency.

Core Carbon Principles

The Integrity Council for the Voluntary Carbon Market is in the process of developing a set of Core Carbon Principles (CCPs) and Assessment Framework (AF) intended to set new threshold standards for high-quality carbon credits.

At Drax, we welcome and support the principals proposed by the Integrity Council. However, it’s crucial they’re applied in ways that are appropriate for engineered carbon removals, and support rather than prevent their development.

Many CCPs are directly applicable to engineered carbon removals and can offer important standards for projects developing removals technologies. Among the most important principals include those stating:

  • Removals must be robustly quantified, with appropriate conservatism in any assumptions made.
  • Key information must be provided in the public domain to enable appropriate scrutiny of the carbon removal activity, while safeguarding commercially sensitive information.
  • Removal credits should be subject to robust, independent third-party validation and verification.
  • Credits should be held in a registry which deals appropriately with removal credits.
  • Registries must be subject to appropriate governance, to ensure their integrity without becoming disproportionately bureaucratic or burdensome.
  • Removals must adhere to high standards of sustainability, taking account of impacts on nature, the climate and society.
  • There should be no double counting of carbon removals between corporates, or between countries. Bearing in mind that both corporates and countries may count the same removals in parallel, and that the Article 6 mechanism means countries can decide whether trades between corporates should or shouldn’t trigger corresponding adjustments to countries’ carbon inventories.

However, as pioneers in the field, we believe that two of the Core Carbon Principles need to be adapted to the specific characteristics of engineered carbon removals.

Supporting additionality and development incentives

The CCPs state: “The greenhouse gas (GHG) emission reductions or removals from the mitigation activity shall be additional, i.e., they would not have occurred in the absence of the incentive created by carbon credit revenues.”

Engineered carbon removal credits such as BECCS and DACS are by their nature additional. They are developed for the specific purpose of removing CO2 from the atmosphere and putting it back in the geosphere. They also rely on revenue from carbon markets – largely the voluntary market at present, but potentially compliance markets such as the U.K. and E.U. ETS in the future.

However, most early projects are likely to have some form of Government support (e.g., 45Q in the U.S., or Contracts for Difference in the U.K.) from outside carbon credit revenues. But that support isn’t intended to be sufficient on its own for their deployment – project developers will be expected to sell credits in compliance or voluntary markets.

Engineered carbon removals have high up-front capital costs, and it’s clear that revenue from voluntary or compliance markets will be essential to make them viable.

Additionality assessments should be risk-based. If it’s clear that a technology-type is additional, a technology-level assessment should be sufficient. This should be supplemented with full transparency on any government support provided to projects.

Compensating against non-permanent storage

On the topic of permanence that CCPs state: “The GHG emission reductions or removals from the mitigation activity shall be permanent, or if they have a risk of reversal, any reversals shall be fully compensated.”  A key benefit of engineered carbon removals with geological storage is that they effectively provide permanent carbon removal. Any risk of reversal over tens of thousands of years is extremely small.

The risk of reversal for nature-based credits, by contrast, is much greater. Schemes for managing reversal risk in the voluntary carbon market that have been developed for nature-based credits, are not necessarily appropriate for engineered removals.

Requirements for project developers to set aside a significant proportion of credits generated in a buffer pool, potentially as much as 10%, are disproportionate to the real risk of reversal from a well-manged geological store. They also fail to take account of the stringent regulatory requirements for geological storage that already exist or are being put in place.

Any ongoing requirements for monitoring should be consistent with existing regulatory requirements placed on storage owners and operators. Similarly, where jurisdictions have robust regulatory arrangements for dealing with CO2 storage risk, which place liabilities on storage owners, operators, or governments, the arrangements in the voluntary carbon market should mirror these arrangements rather than cutting across them, and no additional liabilities should be put on project developers.

At Drax, we believe the CCPs provide a suitable framework to ensure the integrity of engineered carbon removals. If applied pragmatically, they can give purchasers of engineered carbon removal credits confidence in the integrity of the product they’re buying and provide a clear framework for project developers. They can ensure that standards support, rather than stifle the development of high integrity carbon removal projects such as BECCS and DACS, which are essential to achieving our global climate goals.

Carbon removals is a global need. The U.S. is making it possible

Key takeaways:

  • Removing carbon from the atmosphere is urgent if we are to meet global climate targets
  • The U.S.’s commitment to supporting carbon removal technologies creates an opportunity for new bioenergy with carbon capture and storage (BECCS) power stations
  • The market for carbon credits is gaining increasing credibility and verification, making it a source of financing for ambitious decarbonization projects
  • Carbon markets are needed now to make investment into vital removals projects possible in the U.S. and globally

    After a summer of soaring temperatures across the Northern Hemisphere, the global nature of climate change is more obvious than ever. Forest fires around the world in 2021 resulted in double the loss of tree cover than in 2001, while today more than 2.3 billion people face water stress from drought. It’s clear that the action we take to help tackle the global climate emergency must be international too.

    We believe that carbon dioxide (CO2) removals will be crucial in addressing this global challenge. Experts and governments agree that in addition to economy-wide decarbonization, removing carbon from the atmosphere is critical to meeting the goal of net zero CO2 emissions by mid-century. The IPCC says 10 billion tons per year of removals will be needed in 2050 for the world to get to net zero. That’s a huge step up from the 40 million tons captured globally in 2021, but also a significant investment opportunity.

    Our ambition is to remove 4 million tons of CO2 through bioenergy with carbon capture and storage (BECCS) outside the UK per year, while generating renewable, baseload electricity and supporting healthy, sustainable forests.

    The likely contender for our first location? The United States. We already operate in communities across the U.S. South, employing more than 1,200 people in our sustainable biomass pellet production. Now we are preparing to build a new BECCS power station in the region.

    It’s clear to us that the U.S. is an ideal market for BECCS with its long-running sustainable forest industry and range of suitable sites for permanent CO2 storage. We see the country’s efforts to retire coal by 2030 and commitment to innovation as an opportunity to build one of the largest carbon removal projects in the U.S. Our first plant could be capable of permanently removing 2 million tons of carbon from the atmosphere a year, while also generating 2-terawatt hours of 24/7 renewable power.

    The U.S.’s newly legislated commitment to tackling climate change through the Inflation Reduction Act, as well as the Department of Energy’s National Renewable Energy Lab recent scenario planning for ‘100% clean electricity system’ are establishing it as the leading market to deploy new environmental technologies. And a new frontier for permanent, high-quality emissions removals.

    The need for high quality, permanent emissions removals

    A net zero future is only possible through the wide-spread implementation of high-integrity, carbon removals. BECCS offers this by combining low carbon, renewable biomass power generation with carbon capture technology and secure, permanent carbon sequestration.

    BECCS works by generating renewable electricity using biomass sourced from sustainably managed forests that absorb CO2 as they grow. CO2 released in the generation process is captured and stored, permanently and safely, in geological rock formations. The overall process removes more CO2 from the atmosphere than it emits, resulting in negative emissions.

    This allows us to offer decarbonizing industries high-quality carbon removals credits. Given the scale of CO2that must be removed from the atmosphere and the importance for countries and companies around the world to reach net zero, I believe this market for verified CO2 removal credits is a trillion-dollar opportunity.

    Voluntary carbon markets have historically suffered from a lack of sustained and reliable investment due to fluctuating market prices and varying quality of the carbon credits they contain. However, increased oversight from investors, NGOs and independent bodies is encouraging credibility and integrity, prompting sustained adoption by businesses.

    Drax Group CEO Will Gardiner [click to view/download]

    We’ve demonstrated the growing appetite for carbon removals by signing the worlds largest carbon removals deal to date at New York Climate week. The agreement with Respira, an impact-driven carbon finance business, will allow it to purchase 400,000 metric tons of CO2 removals (CDRs) a year from our North American operations. This would enable other corporations and financial institutions to achieve their own CO2 emissions reduction targets, by purchasing CDRs from Respira.

    Deals like these make voluntary carbon markets a more effective means of reducing net CO2 emissions by securing commitments and driving investment in projects that deliver independently verified, high-quality emissions reductions. As the global economy works towards its net zero targets, CO2 removals will be crucial in reducing the still dangerously high levels of carbon in our atmosphere today.

    BECCS stands to be a powerful tool in a net zero future as the only technology capable of delivering both high quality, permanent carbon removals, while also delivering baseload renewable power. The ability to generate power with negative emissions will be crucial for increasingly electrified economies, as they move away from fossil fuels.

    The potential for the U.S.  

    Driven by a dynamic mix of markets, investors and engaged consumers, some of the most prominent U.S. companies are pledging to reach net zero, investing in 24/7 renewable power and other means to do so.

    Technology companies like Alphabet, Apple, and Microsoft have laid out ambitious plans to decarbonize operations, supply chains, and even remove historic emissions. Other organizations, like the First Movers Coalition, include U.S. companies from a range of sectors committing corporate purchasing power to solving difficult decarbonization challenges.

    This industry readiness is increasingly backed up by legislative policy action. The recent Inflation Reduction Act substantially increases the availability of the 45Q tax credit for carbon capture and storage projects, increasing their value from $50 a ton of carbon removals to $85 per ton, helping to further support the business case needed to deploy technologies like BECCS.

    We believe the U.S. is on the right track to create a market in which BECCS can thrive. The Department of Energy’s National Renewable Energy Lab recent ‘100% clean electricity system’ report includes BECCS in three of the four possible scenarios explored. It forecasts the US will need between 7-14GW of installed BECCS capacity by 2035 to achieve an electricity system with net zero CO2 emissions. That equates to removals of approximately 55-120 Mt CO2 per year by 2035.

    The U.S.’s established forestry commercial industry, with its credible commitment to sustainable management offers ample low-grade wood and wood industry residues to power BECCS. The country’s long-running exploration of CO2 capture and transport, and history of industrial innovations means there are the skills, supply chains, and regulatory environment to undertake ambitious new infrastructure projects.

    LaSalle Forest

    BECCS is a proven technology and one that can scale up sooner than any other technology. But action is needed now to make these markets that can deliver large scale carbon removals projects a reality.

    Action is needed now

    For responsible businesses with the desire to go further, faster, or for sectors still developing viable decarbonization routes, carbon removals from BECCS deliver real, verifiable, and permanent progress towards net zero and beyond, to net negative.

    It’s encouraging to see the U.S. pass legislation that can facilitate investment into carbon removal technologies and develop the carbon credit market.

    However, carbon markets must have standards that are credible both in the business community, and in the environmental and civil society. Collaboration between governments, corporations, and NGOs will be critical to ensure we create systems that can tackle the climate emergency.

    We can’t afford to contemplate theoretical net zero futures. Buying and selling high-quality permanent removals is the action we need today. Now is the time to capture the opportunity and be part of the solution together.

    An introduction to carbon accounting

    Key takeaways:

    • Tracking, reporting, and calculating carbon emissions are a key part of progressing countries, industries, and companies towards net zero goals.
    • As a newly established discipline, carbon accounting still lacks standardisation and frameworks in how emissions are tracked, reduced, and mitigated.
    • The main carbon accounting standard used by businesses is the Greenhouse Gas (GHG) Protocol, which lays out three ‘Scopes’ businesses should report and act upon.
    • Carbon accounting evolves from reporting in the use of goals and timeframes in which targets are met.
    • Timeframes are crucial in the deployment of technologies like carbon capture, removals, and achieving net zero.

    How can countries and companies find a route to net zero emissions? Many organisations, countries and industries have pledged to balance their emissions before mid-century. They intend to do this through a combination of cutting emissions and removing carbon from the atmosphere.

    Tracking and quantifying emissions, understanding output, reducing them, and setting tangible targets that can be worked towards are all central to tackling climate change and reducing greenhouse gas emissions – especially when it comes to carbon dioxide (CO2). Emissions and energy consumption reporting is already common practice and compulsory for businesses over a certain size in the UK. However, carbon accounting takes this a step further.

    “Carbon reporting is a statement of physical greenhouse gas emissions that occur over a given period,” explains Michael Goldsworthy, Head of Climate Change and Carbon Strategy at Drax. “Carbon accounting relates to how those emissions are then processed and counted towards specific targets. The methodologies for calculating emissions and determining contributions against targets may then have differing rules depending on which framework or standard is being reported against.”

    Carbon accounting tools can help companies and counties understand their carbon footprint – how much carbon is being emitted as part of their operations, who is responsible for them, and how they can be effectively mitigated.

    Like how financial accounting may seek to balance a company’s books and calculate potential profit, carbon accounting seeks to do the same with emissions, tracking what an entity emits, and what it reduces, removes, or mitigates. Carbon accounting is, therefore, crucial in understanding how countries and companies can contribute to reaching net zero.

    A new space

    How different organisations, countries and industries approach carbon accounting is still an evolving process.

    “It’s as complex as financial accounting, but with financial accounting, there’s a long standing industry that relies on well-established practices and principles. Carbon accounting by contrast is such a new space,” explains Goldsworthy.

    Regardless of its infancy, businesses and countries are already implementing standardised approaches to carbon accounting. Regulations such as emissions trading schemes and reporting systems, such as Streamlined Energy and Carbon Reporting (SECR) and the Taskforce on Climate Related Financial Disclosure (TCFD), are beginning to deliver some degree of consistency in businesses’ carbon reporting.

    Other standards such as the GHG Protocol have sought to provide a standardised basis for corporate reporting and accounting. Elsewhere, voluntary carbon markets (e.g. carbon offsets) have also evolved to allow transferral of carbon reductions or removals between businesses, providing flexibility to companies in delivering their climate commitments.

    The challenge is in aligning these frameworks so that they work together. For example, emissions within a corporate inventory or offset programme must be accounted for in a way that is consistent with a national inventory.

    To date, these accounting systems have evolved independently with different rules and methodologies. Beginning to implement detailed carbon accounting, upon which emissions reductions and removals can be based, requires standardised understanding of what they are and where they come from.

    Reporting and tackling Scope One, Two, and Three emissions

    The main carbon accounting standard used by businesses is the Greenhouse Gas (GHG) Protocol. This voluntary carbon reporting standard can be used by countries and cities, as well as individual companies globally.

    The GHG protocol categorises emissions in three different ‘scopes’, called Scope 1, Scope 2, and Scope 3. Understanding, measuring, and reporting these is a key factor in carbon accounting and can drive meaningful emissions reduction and mitigation.

    Scope One – Direct emissions

    Scope One emissions are those that come as a direct result of a company or country’s activities. These can include fuel combustion at a factory’s facilities, for example, or emissions from a fleet of vehicles.

    Scope One emissions are the most straightforward for an organisation to measure and report, and easier for organisations to directly act on.

    Scope Two – Indirect energy emissions

    Scope Two emissions are those which come from the generation of energy an organisation uses. These can include emissions form electricity, steam, heating, and cooling.

    A business may buy electricity, for example, from an electricity supplier, which acquires power from a generator. If that generator is a fossil-fuelled power station the energy consumer’s Scope Two emissions will be greater than if it buys power from a renewable electricity supplier or generates its own renewable power.

    The ability to change energy suppliers makes Scope Two relatively straightforward for organisations to act on, assuming renewable energy sources are available in the area.

    Scope Three – All other indirect emissions

    Scope Three is much broader. It covers upstream and downstream lifecycle emissions of products used or produced by a company, as well as other indirect emissions such as employee commuting and business travel emissions.

    Identifying and reducing these emissions across supply and value chains can be difficult for businesses with complex supply lines and global distribution networks. They are also hard for companies to directly influence.

    Add in factors like emissions mitigations or offsetting, and the carbon accounting can quickly become much more complex than simply reporting and reducing emissions that occur directly from a company’s activities. Nevertheless, these full-system overviews and whole-product lifecycle accounting are crucial to understanding the true impact of operations and organisations, and to reach climate goals.

    Working to timelines

    Setting goals with defined timelines and the development of rules that ensure consistent accounting is also crucial to implementing effective climate change mitigation frameworks throughout the global economy. Consider the UK’s aim to be net zero by 2050, or Drax’s ambition to be net negative by 2030, as goals with set timelines.

    For many technologies, the time scales over which targets are set have added relevance. There are often upfront emissions to account for and operational emissions that may change over time. Take for example an electric vehicle: the climate benefit will be determined by emissions from construction and the carbon intensity of the electricity used to power it.

    A timeline of BECCS at Drax [click to view/download]

    Looking at a brief snapshot at the beginning of its life, say the first couple of years, might not show any climate benefit compared to a vehicle using an internal combustion engine. Over the lifetime of the vehicle, however, meaningful emissions savings may become clear – especially if the electricity powering the vehicle continues to decarbonise over time.

    This provides a challenge when setting carbon emissions targets. Targets set too far in the future potentially risk inaction in the short term, while targets set over short periods risk disincentivising technologies that have substantial long-term mitigation potential. 

    Delivering net zero

    Some greenhouse gas emissions will be impossible to fully abate, such as methane and nitrous oxide emissions from agriculture, while other sectors, like aviation, will be incredibly difficult to fully decarbonise. This makes carbon removal technologies all the more critical to ensuring net zero is achieved.

    Technologies such as bioenergy with carbon capture and storage (BECCS) – which combines low-carbon, biomass-fuelled renewable power generation with carbon capture and storage (CCS) to permanently remove emissions from the atmosphere – are already under development.

    However, it is imperative that such technologies are accounted for using robust approaches to carbon accounting, ensuring all emission and removals flows across the value chain are accurately calculated in accordance with best scientific practice. In the case of BECCS, it’s vital that not only are emissions from processing and transporting biomass considered, but also its potential impact on the land sector.

    Forests from which biomass is sourced will be managed for a variety of reasons, such as mitigating natural disturbance, delivering commercial returns, and preserving ecosystems. Accurate accounting of these impacts is therefore key to ensuring such technologies deliver meaningful reductions in atmospheric CO2within timeframes guided by science.

    Accounting for net zero

    While carbon accounting is crucial to reaching a true level of net zero in the UK and globally, where residual emissions are balanced against removals, the practice should not be used exclusively to deliver numerical carbon goals.

    “To deliver net zero, it’s vital we have robust carbon accounting systems and targets in place, ensuring we reduce fossil emissions as far as possible while also incentivising carbon removal solutions,” says Goldsworthy.

    “However, many removal solutions rely on the natural world and so it is critical that ecosystems are not only valued on a carbon basis but consider other environmental factors such as biodiversity as well.”

    What is the carbon cycle?

    What is the carbon cycle?

    All living things contain carbon and the carbon cycle is the process through which the element continuously moves from one place in nature to another. Most carbon is stored in rock and sediment, but it’s also found in soil, oceans, and the atmosphere, and is produced by all living organisms – including plants, animals, and humans.

    Carbon atoms move between the atmosphere and various storage locations, also known as reservoirs, on Earth. They do this through mechanisms such as photosynthesis, the decomposition and respiration of living organisms, and the eruption of volcanoes.

    As our planet is a closed system, the overall amount of carbon doesn’t change. However, the level of carbon stored in a particular reservoir, including the atmosphere, can and does change, as does the speed at which carbon moves from one reservoir to another.

    What is the role of photosynthesis in the carbon cycle?

    Carbon exists in many different forms, including the colourless and odourless gas that is carbon dioxide (CO2). During photosynthesis, plants absorb light energy from the sun, water through their roots, and CO2 from the air – converting them into oxygen and glucose.

    The oxygen is then released back into the air, while the carbon is stored in glucose, and used for energy by the plant to feed its stem, branches, leaves, and roots. Plants also release CO2 into the atmosphere through respiration.

    Animals – including humans – who consume plants similarly digest the glucose for energy purposes. The cells in the human body then break down the glucose, with CO2 emitted as a waste product as we exhale.

    CO2 is also produced when plants and animals die and are broken down by organisms such as fungi and bacteria during decomposition.

    What is the fast carbon cycle?

    The natural process of plants and animals releasing CO2 into the atmosphere through respiration and decomposition and plants absorbing it via photosynthesis is known as the biogenic carbon cycle. Biogenic refers to something that is produced by or originates from a living organism. This cycle also incorporates CO2 absorbed and released by the world’s oceans.

    The biogenic carbon cycle is also called the “fast” carbon cycle, as the carbon that circulates through it does so comparatively quickly. There are nevertheless substantial variations within this faster cycle. Reservoir turnover times – a measure of how long the carbon remains in one location – range from years for the atmosphere to decades through to millennia for major carbon sinks on land and in the ocean.

    What is the slow carbon cycle?

    In some circumstances, plant and animal remains can become fossilised. This process, which takes millions of years, eventually leads to the formation of fossil fuels. Coal comes from the remains of plants that have been transformed into sedimentary rock. And we get crude oil and natural gas from plankton that once fell to the ocean floor and was, over time, buried by sediment.

    The rocks and sedimentary layers where coal, crude oil, and natural gas are found form part of what is known as the geological or slow carbon cycle. From this cycle, carbon is returned to the atmosphere through, for example, volcanic eruptions and the weathering of rocks. In the slow carbon cycle, reservoir turnover times exceed 10,000 years and can stretch to millions of years.

    How do humans impact the carbon cycle?

    Left to its own devices, Earth can keep CO2 levels balanced, with similar amounts of CO2 released into and absorbed from the air. Carbon stored in rocks and sediment would slowly be emitted over a long period of time. However, human activity has upset this natural equilibrium.

    Burning fossil fuel releases carbon that’s been sequestered in geological formations for millions of years, transferring it from the slow to the fast (biogenic) carbon cycle. This influx of fossil carbon leads to excessive levels of atmospheric CO2, that the biogenic carbon cycle can’t cope with.

    As a greenhouse gas that traps heat from the sun between the Earth and its atmosphere, CO2 is essential to human existence. Without CO2 and other greenhouse gases, the planet could become too cold to sustain life.

    However, the drastic increase in atmospheric CO2 due to human activity means that too much heat is now retained between Earth and the atmosphere. This has led to a continued rise in the average global temperature, a development that is part of climate change.

    Where does biomass fit into the carbon cycle?

    One way to help reduce fossil carbon is to replace fossil fuels with renewable energy, including sustainably sourced biomass. Feedstock for biomass energy includes plant material, wood, and forest residue – organic matter that absorbs CO2 as part of the biogenic carbon cycle. When the biomass is combusted in energy or electricity generation, the biogenic carbon stored in the organic matter is released back into the atmosphere as CO2.

    This is distinctly different from the fossil carbon released by oil, gas, and coal. The addition of carbon capture and storage to bioenergy – creating BECCS – means the biogenic carbon absorbed by the organic matter is captured and sequestered, permanently removing it from the atmosphere. By capturing CO2 and transporting it to geological formations – such as porous rocks – for permanent storage, BECCS moves CO2 from the fast to the slow carbon cycle.

    This is the opposite of burning fossil fuels, which takes carbon out of geological formations (the slow carbon cycle) and emits it into the atmosphere (the fast carbon cycle). Because BECCS removes more carbon than it emits, it delivers negative emissions.

    Fast facts

    • According to a 2019 study, human activity including the burning of fossil fuels releases between 40 and 100 times more carbon every year than all volcanic eruptions around the world.
    • In March 2021, the Mauna Loa Observatory in Hawaii reported that average CO2 in the atmosphere for that month was 14 parts per million. This was 50% higher than at the time of the Industrial Revolution (1750-1800).
    • There is an estimated 85 billion gigatonne (Gt) of carbon stored below the surface of the Earth. In comparison, just 43,500 Gt is stored on land, in oceans, and in the atmosphere.
    • Forests around the world are vital carbon sinks, absorbing around 7.6 million tonnes of CO2 every year.

    Go deeper

    Forests, net zero and the science behind biomass

    Tackling climate change and spurring a global transition to net zero emissions will require collaboration between science and industry. New technologies and decarbonisation methods must be rooted in scientific research and testing.

    Drax has almost a decade of experience in using biomass as a renewable source of power. Over that time, our understanding around the effectiveness of bioenergy, its role in improving forest health and ability to deliver negative emissions, has accelerated.

    Research from governments and global organisations, such as the UN’s Intergovernmental Panel on Climate Change (IPCC) increasingly highlight sustainably sourced biomass and bioenergy’s role in achieving net zero on a wide scale.

    The European Commission has also highlighted biomass’ potential to provide a solution that delivers both renewable energy and healthy, sustainably managed forests.  Frans Timmermans, the executive vice-president of the European Commission in charge of the European Green Deal has emphasised it’s importance in bringing economies to net zero, saying: “without biomass, we’re not going to make it. We need biomass in the mix, but the right biomass in the mix.”

    The role of biomass in a sustainable future

    Moving away from fossil fuels means building an electricity system that is primarily based on renewables. Supporting wind and solar, by providing electricity at times of low sunlight or wind levels, will require flexible sources of generation, such as biomass, as well as other technologies like increased energy storage.

    In the UK, the Climate Change Committee’s (CCC) Sixth Carbon Budget report lays out its Balanced Net Zero Pathway. In this lead scenario, the CCC says that bioenergy can reduce fossil emissions across the whole economy by 2 million tonnes of CO2 or equivalent emissions (MtCO2e) per year by 2035, increasing to 2.5 MtCO2e in 2045.

    Foresters in working forest, Mississippi

    Foresters in working forest, Mississippi

    Biomass is also expected to play a crucial role in supplying biofuels and hydrogen production for sectors of the global economy that will continue to use fuel rather than electricity, such as aviation, shipping and industrial processes. The CCC’s Balanced Net Zero Pathway suggest that enough low-carbon hydrogen and bioenergy will be needed to deliver 425 TWh of non-electric power in 2050 – compared to the 1,000 TWh of power fossil fuels currently provide to industries today.

    However, bioenergy can only be considered to be good for the climate if the biomass used comes from sustainably managed sources. Good forest management practises ensure that forests remain sustainable sources of woody biomass and effective carbon sinks.

    A report co-authored by IPCC experts examines the scientific literature around the climate effects (principally CO2 abatement) of sourcing biomass for bioenergy from forests managed according to sustainable forest management principles and practices.

    The report highlights the dual impact managed forests contribute to climate change mitigation by providing material for forest products, including biomass that replace greenhouse gas (GHG)-intensive fossil fuels, and by storing carbon in forests and in long-lived forest products.

    The role of biomass and bioenergy in decarbonising economies goes beyond just replacing fossil fuels. The addition of carbon capture and storage (CCS) to bioenergy to create bioenergy with carbon capture and storage (BECCS) enables renewable power generation while removing carbon from the atmosphere and carbon cycle permanently.

    The negative emissions made possible by BECCS are now seen as a fundamental part of many scenarios to limit global warming to 1.5oC above pre-industrial levels.

    BECCS and the path to net zero

    The IPCC’s special report on limiting global warming to 1.5oC above pre-industrial levels, emphasises that even across a wide range of scenarios for energy systems, all share a substantial reliance on bioenergy – coupled with effective land-use that prevents it contributing to deforestation.

    The second chapter of the report deals with pathways that can bring emissions down to zero by the mid-century. Bioenergy use is substantial in 1.5°C pathways with or without CCS due to its multiple roles in decarbonising both electricity generation and other industries that depend on fossil fuels.

    However, it’s the negative emissions made possible by BECCS that make biomass  instrumental in multiple net zero scenarios. The IPCC report highlights BECCS alongside the associated afforestation and reforestation (AR), that comes with sustainable forest management, are key components in pathways that limit climate change to 1.5oC.

    Graphic showing how BECCS removes carbon from the atmosphere. Click to view/download

    There are two key factors that make BECCS and other forms of emissions removals so essential: The first is their ability to neutralise residual emissions from sources that are not reducing their emissions fast enough and those that are difficult or even impossible to fully decarbonise. Aviation and agriculture are two sectors vital to the global economy with hard-to-abate emissions. Negative emissions technologies can remove an equivalent amount of CO2 that these industries produce helping balance emissions and progressing economies towards net zero.

    The second reason BECCS and other negative emissions technologies will be so important in the future is in the removal of historic CO2 emissions. What makes CO2 such an important GHG to reduce and remove is that it lasts much longer in the atmosphere than any other. To help reach the Paris Agreement’s goal of limiting temperature rises to below 1.5oC removing historic emissions from the atmosphere will be essential.

    In the UK, the  CCC’s 2018 report ‘Biomass in a low-carbon economy’ also points to BECCS as both a crucial source of energy and emissions abatement.

    It suggests that power generation from BECCS will increase from 3 TWh per year in 2035 to 45 TWh per year in 2050. It marks a sharp increase from the 19.5 TWh that biomass (without CCS) accounted for across 2020, according to Electric Insights data. It also suggests that BECCS could sequester 1.1 tonnes of CO2 for every tonne of biomass used, providing clear negative emissions.

    However, the report makes clear that unlocking the potential of bioenergy and BECCS is only possible when biomass stocks are managed in a sustainable way that, as a minimum requirement, maintains the carbon stocks in plants and soils over time.

    With increased attention paid to forest management and land use, there is a growing body of evidence that points to bioenergy as a win-win solution that can decarbonise power and economies, while supporting healthy forests that effectively sequester CO2.

    How bioenergy ensures sustainable forests

    Biomass used in electricity generation and other industries must come from sustainable sources to offer a renewable, climate beneficial [or low carbon] source of power.

    UK legislation on biomass sourcing states that operators must maintain an adequate inventory of the trees in the area (including data on the growth of the trees and on the extraction of wood) to ensure that wood is extracted from the area at a rate that does not exceed its long-term capacity to produce wood. This is designed to ensure that areas where biomass is sourced from retain their productivity and ability to continue sequestering carbon.

    Ensuring that forestland remains productive and protected from land-use changes, such as urban creep, where vegetated land is converted into urban, concreted spaces, depends on a healthy market for wood products. Industries such as construction and furniture offer higher prices for higher-quality wood. While low-quality, waste wood, as well as residues from forests and wood-industry by-products, can be bought and used to produce biomass pellets.

    A report by Forest 2 Market examined the relationship between demand for wood and forests’ productivity and ability to sequester carbon in the US South, where Drax sources about two-thirds of its biomass.

    The report found that increased demand for wood did not displace forests in the US South. Instead, it encouraged landowners to invest in productivity improvements that increased the amount of wood fibre and therefore carbon contained in the region’s forests.

    A synthesis report, which examines a broad range of research papers,  published in Forest Ecology and Management in March of 2021, concluded from existing studies that claims of large-scale damage to biodiversity from woody biofuel in the South East US are not supported. The use of these forest residues as an energy source was also found to lead to net GHG greenhouse emissions savings compared to fossil fuels, according to Forest Research.

    Importantly the research shows that climate risks are not exacerbated because of biomass sourcing; in fact, the opposite is true with annual wood growth in the US South increasing by 112% between 1953 and 2015.

    Delivering a “win-win solution”

    The European Commission’s JRC Science for Policy literature review and knowledge synthesis report ‘The use of woody biomass for energy production in the EU’ suggests  a win-win forest bioenergy pathway is possible, that can reduce greenhouse gas emissions in the short term, while at the same time not damaging, or even improving, the condition of forest ecosystems.

    However, it also makes clear “lose-lose” situations is also a possible, in which forest ecosystems are damaged without providing carbon emission reductions in policy-relevant timeframes.

    Win-win management practices must benefit climate change mitigation and have either a neutral or positive effect on biodiversity. A win-win future would see the afforestation of former arable land with diverse and naturally regenerated forests.

    The report also warns of trade-offs between local biodiversity and mitigating carbon emissions, or vice versa. These must be carefully navigated to avoid creating a lose-lose scenario where biodiversity is damaged and natural forests are converted into plantations, while BECCS fails to deliver the necessary negative emissions.

    In a future that will depend on science working in collaboration with industries to build a net zero future continued research is key to ensuring biomass can deliver the win-win solution of renewable electricity with negative emissions while supporting healthy forests.

    Updating on ambitions for pellet plants, biomass sales and BECCS

    Foresters in working forest, Mississippi

    Highlights

    • New targets for pellet production and biomass sales
      • Biomass pellet production – targeting 8Mt pa by 2030 (currently c.4Mt)
      • Biomass pellet sales to third parties – targeting 4Mt pa by 2030 (currently c.2Mt)
    • Continued progress with UK BECCS(1) and biomass cost reduction
      • BECCS at Drax Power Station – targeting 8Mt pa of negative CO2 emissions by 2030
      • Biomass cost reduction – continuing to target biomass production cost of $100/t(2)
    • £3bn of investment in opportunities for growth 2022 to 2030
      • Pellet production, UK BECCS and pumped storage
      • Self-funded and significantly below 2x net debt to Adjusted EBITDA(3) in 2030
    • Development of additional investment opportunities for new-build BECCS
      • Targeting 4Mt pa of negative CO2 emissions outside of UK by 2030
    • Targeting returns significantly in excess of the Group’s cost of capital

    Will Gardiner, Drax Group CEO, said:

    Drax Group CEO Will Gardiner

    Will Gardiner, CEO, Drax Group. Click to view/download.

    “Drax has made excellent progress during 2021 providing a firm foundation for further growth. We have advanced our BECCS project – a vital part of the East Coast Cluster that was recently selected to be one of the UK’s two priority CCS projects. And we’re now setting out a strategy to take the business forward, enabling Drax to make an even greater contribution to global efforts to reach net zero.

    “We believe Drax can deliver growth and become a global leader in sustainable biomass and negative emissions and a UK leader in dispatchable, renewable generation. We aim to double our sustainable biomass production capacity by 2030 – creating opportunities to double our sales to Asia and Europe, where demand for biomass is increasing as countries transition away from coal.

    “As a global leader in negative emissions, we’re going to scale up our ambitions internationally. Drax is now targeting 12 million tonnes of carbon removals each year by 2030 by using bioenergy with carbon capture and storage (BECCS). This includes the negative emissions we can deliver at Drax Power Station in the UK and through potential new-build BECCS projects in North America and Europe, supporting a new sector of the economy, which will create jobs, clean growth and exciting export opportunities.”

    Capital Markets Day

    Drax is today hosting a Capital Markets Day for investors and analysts.

    Will Gardiner and members of his leadership team will update on the Group’s strategy, market opportunities and development projects. The day will outline the significant opportunities Drax sees to grow its biomass supply chain, biomass sales and BECCS, as well as long-term dispatchable generation from biomass and pumped storage.

    Purpose and ambition

    The Group’s purpose is to enable a zero carbon, lower cost energy future and its ambition is to be a carbon negative company by 2030. The Group aims to realise its purpose and ambition through three strategic pillars, which are closely aligned with global energy policies, which increasingly recognise the unique role that biomass can play in the fight against climate change.

    Strategic pillars

    • To be a global leader in sustainable biomass pellets
    • To be a global leader in negative emissions
    • To be a leader in UK dispatchable, renewable generation

    The development of these pillars remains underpinned by the Group’s continued focus on safety, sustainability and biomass cost reduction.

    A Global leader in sustainable biomass pellets

    Drax believes that the global market for sustainable biomass will grow significantly, creating opportunities for sales to third parties in Asia and Europe, BECCS, generation and other long-term uses of biomass. Delivery of these opportunities is supported by the expansion of the Group’s biomass pellet production capacity.

    The Group has 13 operational pellet plants with nameplate capacity of c.4Mt, plus a further two plants currently commissioning and other developments/expansions which will increase this to c.5Mt once complete.

    Drax is targeting 8Mt of production capacity by 2030, which will require the development of over 3Mt of new biomass pellet production capacity. To deliver this additional capacity Drax is developing a pipeline of organic projects, principally focused on North America. Drax expects to take a final investment decision on 0.5-1Mt of new capacity in 2022, targeting returns significantly in excess of the Group’s cost of capital.

    Underpinned by this expanded production capacity, Drax aims to double sales of biomass to third parties to 4Mt pa by 2030, developing its market presence in Asia and Europe, facilitated by the creation of new business development teams in Tokyo and London.

    Drax is a major producer, supplier and user of biomass, active in all areas of the supply chain with long-term relationships and almost 20 years of experience in biomass operations. The Group’s innovation in coal-to-biomass engineering, supply chain management and leadership in negative emissions can be deployed alongside its large, reliable and sustainable supply chain to support customer decarbonisation journeys with long-term partnerships.

    Drax expects to sell all the biomass it produces, based on an appropriate market price, typically with long-term index-linked contracts.

    Continued focus on cost reduction

    In 2018 the Group’s biomass production cost was $166/t(2). At the H1 2021 results, through a combination of fibre sourcing, operational improvements and capacity expansion (including the acquisition of Pinnacle Renewable Energy Inc), the production cost had reduced to $141/t(2). Drax’s aims to use the combined expertise of Drax and Pinnacle to apply learnings and cost savings across its portfolio and continues to target $100/t(2) (£50/MWh equivalent(4)) by 2027.

    A Global leader in negative emissions

    The Intergovernmental Panel on Climate Change(5) and the Coalition for Negative Emissions(6) have both outlined a clear role for BECCS in delivering the negative emissions required to limit global warming to 1.5oC above pre-industrial levels and to achieve net zero by 2050, identifying a requirement of between 2bn and 7bn tonnes of negative emissions globally from BECCS.

    Separately, the UK Government has recently published its Net Zero Strategy and Biomass Policy Statement reaffirming the established international scientific consensus that sustainable biomass is renewable and that it will play a critical role in helping the UK achieve its climate targets. It also signposted an ambition for at least 5Mt pa of negative emissions from BECCS and Direct Air Capture by 2030, 23Mt pa by 2035 and up to 81Mt pa by 2050. The reports commit the Government to the development during 2022 of a financial model to support BECCS to meet these requirements.

    Subject to the right regulatory environment, Drax plans to transform Drax Power Station into the world’s biggest carbon capture project using BECCS to permanently remove 8Mt of CO2 emissions from the atmosphere each year by 2030. The project is well developed, the technology is proven and an investment decision could be taken in 2024 with the first BECCS unit operational in 2027 and a second in 2030, subject to the right investment framework.

    The Group aims to build on this innovation with a new target to deliver 4Mt of negative CO2 emissions pa from new-build BECCS outside of the UK by 2030 and is currently developing models for North American and European markets.

    A UK leader in dispatchable, renewable generation

    The UK’s plans to achieve net zero by 2050 will require the electrification of heating and transport systems, resulting in a significant increase in demand for electricity. Drax believes that over 80% of this could be met by intermittent renewable and inflexible low-carbon energy sources – wind, solar and nuclear. However, this will only be possible if the remaining power sources can provide the dispatchable power and non-generation system support services the power system requires to ensure security of supply and to limit the cost to the consumer.

    Long-term biomass generation and pumped storage hydro can provide these increasingly important services. Drax Power Station is the UK’s largest source of renewable power by output and the largest dispatchable plant. The Group is continuing to develop a lower cost operating model for this asset, supported by a reduction in fixed costs associated with the end of coal operations.

    Drax is also developing an option for new pumped storage – Cruachan II – which could take a final investment decision in 2024 and be operational by 2030, providing an additional 600MW of dispatchable long-duration storage to the power system.

    In its Smart Systems and Flexibility plan (July 2021), the UK Government described long-duration storage technologies as essential for achieving net zero and has committed to take actions to de-risk investment for large-scale and long-duration storage.

    Capital allocation and dividend

    Strategic capital investment (3Mt of new biomass pellet production capacity, BECCS at Drax Power Station and Cruachan II) is expected to be in the region of £3bn between 2022 and 2030, backed by long-term contracted cashflows and targeting high single-digit returns and above.

    No final investment decision has been taken on any of these projects and both BECCS and Cruachan II remain subject to further clarity on regulatory and funding mechanisms.

    The Group believes these investments can be self-funded through strong cash generation over the period with net debt to Adjusted EBITDA significantly below 2x at the end of 2030, providing flexibility to support further investment, such as new-build BECCS as these options develop.

    Drax remains committed to the capital allocation policy established in 2017, noting that average annual dividend growth was around 10% in the last 5-years.

    Webcast and presentation material

    The event will be webcast from 10.00am and the material made available on the Group’s website from 7:00am. Joining instructions for the webcast and presentation are included in the links below.

    https://secure.emincote.com/client/drax/drax016

    Notes:
    (1) BioEnergy Carbon Capture and Storage.
    (2) Free on Board – cost of raw fibre, processing into a wood pellet, delivery to Drax port facilities in US and Canada, loading to vessel for shipment and overheads.
    (3) Earnings before interest, tax, depreciation, amortisation, excluding the impact of exceptional items and certain remeasurements.
    (4) From c.£75/MWh in 2018 to c.£50/MWh, assuming a constant FX rate of $1.45/£.
    (5) Coalition for Negative Emissions (June 2021).
    (6) Intergovernmental Panel on Climate Change (August 2021).

    Enquiries:

    Drax Investor Relations: Mark Strafford
    +44 (0) 7730 763 949

    Media:

    Drax External Communications: Ali Lewis
    +44 (0) 7712 670 888

    Website: www.drax.com/us

    Forward Looking Statements
    This announcement may contain certain statements, expectations, statistics, projections and other information that are or may be forward-looking. The accuracy and completeness of all such statements, including, without limitation, statements regarding the future financial position, strategy, projected costs, plans, investments, beliefs and objectives for the management of future operations of Drax Group plc (“Drax”) and its subsidiaries (the “Group”), including in respect of Pinnacle Renewable Energy Inc. (“Pinnacle”), together forming the enlarged business, are not warranted or guaranteed. By their nature, forward-looking statements involve risk and uncertainty because they relate to events and depend on circumstances that may occur in the future. Although Drax believes that the statements, expectations, statistics and projections and other information reflected in such statements are reasonable, they reflect the Company’s current view and beliefs and no assurance can be given that they will prove to be correct. Such events and statements involve significant risks and uncertainties. Actual results and outcomes may differ materially from those expressed or implied by those forward-looking statements. There are a number of factors, many of which are beyond the control of the Group, which could cause actual results and developments to differ materially from those expressed or implied by such forward-looking statements. These include, but are not limited to, factors such as: future revenues being lower than expected; increasing competitive pressures in the industry; and/or general economic conditions or conditions affecting the relevant industry, both domestically and internationally, being less favourable than expected; change in the policy of key stakeholders, including governments or partners or failure or delay in securing the required financial, regulatory and political support to progress the development of Drax and its operations. We do not intend to publicly update or revise these projections or other forward-looking statements to reflect events or circumstances after the date hereof, and we do not assume any responsibility for doing so.

    END

    Transporting carbon – How to safely move CO2 from the atmosphere to permanent storage

    Key points

    • Carbon capture usage and storage (CCUS) offers a unique opportunity to capture and store the UK’s emissions and help the country reach its climate goals.
    • Carbon dioxide (CO2) can be stored in geological reservoirs under the North Sea, but getting it from source to storage will need a large and safe CO2 transportation network.
    • The UK already has a long history and extensive infrastructure for transporting gas across the country for heating, cooking and power generation.
    • This provides a foundation of knowledge and experience on which to build a network to transport CO2.

    Across the length of the UK is an underground network similar to the trainlines and roadways that crisscross the country above ground. These pipes aren’t carrying water or broadband, but gas. Natural gas is a cornerstone of the UK’s energy, powering our heating, cooking and electricity generation. But like the country’s energy network, the need to reduce emissions and meet the UK’s target of net zero emissions by 2050 is set to change this.

    Today, this network of pipes takes fossil fuels from underground formations deep beneath the North Sea bed and distributes it around the UK to be burned – producing emissions. A similar system of subterranean pipelines could soon be used to transport captured emissions, such as CO2, away from industrial clusters around factories and power stations, locking them away underground, permanently and safely.

    Conveyer system at Drax Power Station transporting sustainable wood pellets

    The rise of CCUS technology is the driving force behind CO2 transportation. The process captures CO2 from emissions sources and transports it to sites such as deep natural storage enclaves far below the seabed.

    Bioenergy with carbon capture and storage (BECCS) takes this a step further. BECCS uses sustainable biomass to generate renewable electricity. This biomass comes from sources, such as forest residues or agricultural waste products, which remove CO2 from the atmosphere as they grow. Atmospheric COreleased in the combustion of the biomass is then captured, transported and stored at sites such as deep geological formations.

    Across the whole BECCS process, CO2 has gone from the atmosphere to being permanently trapped away, reducing the overall amount of CO2 in the atmosphere and delivering what’s known as negative emissions.

    BECCS is a crucial technology for reaching net zero emissions by 2050, but how can we ensure the CO2 is safely transported from the emissions source to storage sites?

    Moving gases around safely

    Moving gases of any kind through pipelines is all about pressure. Gases always travel from areas of high pressure to areas of low pressure. By compressing gas to a high pressure, it allows it to flow to other locations. Compressor stations along a gas pipeline help to maintain right the pressure, while metering stations check pressure levels and look out for leaks.

    The greater the pressure difference between two points, the faster gases will flow. In the case of CO2, high absolute pressures also cause it to become what’s known as a supercritical fluid. This means it has the density of a liquid but the viscosity of a gas, properties that make it easier to transport through long pipelines.

    Since 1967 when North Sea natural gas first arrived in the UK, our natural gas transmission network has expanded considerably, and is today made up of almost 290,000 km of pipelines that run the length of the country. Along with that physical footprint is an extensive knowledge pool and a set of well-enforced regulations monitoring their operation.

    While moving gas through pipelines across the country is by no means new, the idea of CO2 transportation through pipelines is. But it’s not unprecedented, as it has been carried out since the 1980s at scale across North America. In contrast to BECCS, which would transport CO2 to remove and permanently store emissions, most of the CO2 transport in action today is used in oil enhanced recovery – a means of ejecting more fossil fuels from depleted oil wells. However, the principle of moving CO2 safely over long distances remains relevant – there are already 2,500 km of pipelines in the western USA, transporting as much as 50 million tonnes of CO2 a year.

    “People might worry when there is something new moving around in the country, but the science community doesn’t have sleepless nights about CO2 pipelines,” says Dr Hannah Chalmers, from the University of Edinburgh. “It wouldn’t explode, like natural gas might, that’s just not how the molecule works. If it’s properly installed and regulated, there’s no reason to be concerned.”

    CO2 is not the same as the methane-based natural gas that people use every day. For one, it is a much more stable, inert molecule, meaning it does not react with other molecules, and it doesn’t fuel explosions in the same way natural gas would.

    CO2 has long been understood and there is a growing body of research around transporting and storing it in a safe efficient way that can make CCUS and BECCS a catalyst in reducing the UK’s emissions and future-proofing its economy.

    Working with CO2 across the UK

    Working with CO2 while it is in a supercritical state mean it’s not just easier to move around pipes. In this state CO2 can also be loaded onto ships in very large quantities, as well as injected into rock formations that once trapped oil and gas, or salt-dense water reserves.

    Decades of extracting fossil fuels from the North Sea means it is extensively mapped and the rock formations well understood. The expansive layers of porous sandstone that lie beneath offer the UK an estimated 70 billion tonnes of potential CO2 storage space – something a number of industrial clusters on the UK’s east coast are exploring as part of their plans to decarbonise.

    Source: CCS Image Library, Global CCS Institute [Click to view/download]

    Drax is already running a pilot BECCS project at its power station in North Yorkshire. As part of the Zero Carbon Humber partnership and wider East Coast Cluster, Drax is involved in the development of large scale carbon storage capabilities in the North Sea that can serve the Humber and Teesside industrial clusters. As Drax moves towards its goal of becoming carbon negative by 2030, transporting CO2 safely at scale is a key focus.

    “Much of the research and engineering has already been done around the infrastructure side of the project,” explains Richard Gwilliam, Head of Cluster Development at Drax. “Transporting and storing CO2 captured by the BECCS projects is well understood thanks to extensive engineering investigations already completed both onshore and offshore in the Yorkshire region.”

    This also includes research and development into pipes of different materials, carrying CO2 at different pressures and temperatures, as well as fracture and safety testing.

    The potential for the UK to build on this foundation and progress towards net zero is considerable. However, for it to fully manifest it will need commitment at a national level to building the additional infrastructure required. The results of such a commitment could be far reaching.

    In the Humber alone, 20% of economic value comes from energy and emissions-intensive industries, and as many as 360,000 jobs are supported by industries like refining, petrochemicals, manufacturing and power generation. Putting in place the technology and infrastructure to capture, transport and store emissions will protect those industries while helping the UK reach its climate goals.

    It’s just a matter of putting the pipes in place.

    Go deeper: How do you store CO2 and what happens to it when you do?

    What is bioenergy with carbon capture and storage (BECCS)?

    What is bioenergy with carbon capture and storage (BECCS)? 

    Bioenergy with carbon capture and storage (BECCS) is the process of capturing and permanently storing carbon dioxide (CO2) from biomass (organic matter) energy generation.

    Why is BECCS important for decarbonisation? 

    When sustainable bioenergy is paired with carbon capture and storage it becomes a source of negative emissions, as CO2 is permanently removed from the carbon cycle.

    Experts believe that negative emissions technologies (NETs) are crucial to helping countries meet the long-term goals set out in the Paris Climate Agreement. As BECCS is the most scalable of these technologies this decade, it has a key role to play in combating climate change.

    How is the bioenergy for BECCS generated?

    Most bioenergy is produced by combusting biomass as a fuel in boilers or furnaces to produce high-pressure steam that drives electricity-generating turbines. Alternatively, bioenergy generation can use a wide range of organic materials, including crops specifically planted and grown for the purpose, as well as residues from agriculture, forestry and wood products industries. Energy-dense forms of biomass, such as compressed wood pellets, enable bioenergy to be generated on a much larger scale. Fuels like wood pellets can also be used as a substitute for coal in existing power stations.

    How is the carbon captured?

    BECCS uses a post-combustion carbon capture process, where solvents isolate CO2 from the flue gases produced when the biomass is combusted. The captured CO2 is pressurised and turned into a liquid-like substance so it can then be transported by pipeline.

    How is the carbon stored?

    Captured CO2 can be safely and permanently injected into naturally occurring porous rock formations, for example unused natural gas reservoirs, coal beds that can’t be mined, or saline aquifers (water permeable rocks saturated with salt water). This process is known as sequestration.

    Over time, the sequestered CO2 may react with the minerals, locking it chemically into the surrounding rock through a process called mineral storage.

    BECCS fast facts

    Is BECCS sustainable?

     Bioenergy can be generated from a range of biomass sources ranging from agricultural by-products to forestry residues to organic municipal waste. During their lifetime plants absorb CO2 from the atmosphere, this balances out the CO2that is released when the biomass is combusted.

    What’s crucial is that the biomass is sustainably sourced, be it from agriculture or forest waste. Responsibly managed sources of biomass are those which naturally regenerate or are replanted and regrown, where there’s a increase of carbon stored in the land and where the natural environment is protected from harm.

    Biomass wood pellets used as bioenergy in the UK, for example, are only sustainable when the forests they are sourced from continue to grow. Sourcing decisions must be based on science and not adversely affect the long-term potential of forests to store and sequester carbon.

    Biomass pellets can also create a sustainable market for forestry products, which serves to encourage reforestation and afforestation – leading to even more CO2 being absorbed from the atmosphere.

    Go deeper:

    • The triple benefits for the environment and economy of deploying BECCS in the UK.
    • How BECCS can offer essential grid stability as the electricity system moves to low- and zero-carbon sources.
    • Producing biomass from sustainable forests is key to ensuring BECCS can deliver negative emissions.
    • 5 innovative projects where carbon capture is already underway around the world
    • 7 places on the path to negative emissions through BECCS

    How to build a business model for negative emissions

    Watching a biomass train as it prepares to enter Drax Power Station's rail unloading building 2 (RUB2)

    In brief

    • Policy intervention is needed to enable enough BECCS in power to make a net zero UK economy possible by 2050

    • Early investment in BECCS can insure against the risk and cost of delaying significant abatement efforts into the 2030s and 2040s

    • A two-part business model for BECCS of carbon payment and power CfD offers a clear path to technology neutral and subsidy free GGRs

    The UK’s electricity system is based on a market of buying and selling power and other services. For this to work electricity must be affordable to consumers, but the parties providing power must be able to cover the costs of generating electricity, emitting carbon dioxide (CO2) and getting electricity to where it needs to be.

    This process has thrived and proved adaptable enough to rapidly decarbonise the electricity system in the space of a decade.

    With a 58% reduction in the carbon intensity of power generation, the UK’s electricity has decarbonised twice as fast as that of other major economies. As the UK pushes towards its goal of achieving net zero emissions by 2050, new technologies are needed, and the market must extend to enable innovation.

    Bioenergy with carbon capture and storage (BECCS) is one of the key technologies needed at scale for the UK to reach net zero. Yet there is no market for the negative emissions BECCS can deliver, in contrast to other energy system services.

    BECCS has been repeatedly flagged as vital for the UK to reach its climate goals, owing to its ability to deliver negative emissions. The Climate Change Committee has demonstrated that negative emissions – also known as greenhouse gas removals (GGRs) or carbon removals – will be needed at scale to achieve net zero, to offset residual emissions from hard to decarbonise sectors such as aviation and agriculture. But there is no economic mechanism to reward negative emissions in the energy market.

    For decarbonisation technologies like BECCS in power to develop to the scale and within the timeframe needed, the Government must implement the necessary policies to incentivise investment, and allow them to thrive as part of the energy and carbon markets.

    BECCS is essential to bringing the whole economy to net zero

    The primary benefit of BECCS in power is its ability to deliver negative emissions by removing CO2 from the atmosphere through responsibly managed forests, energy crops or agricultural residues, then storing the same amount of CO2 underground, while producing reliable, renewable electricity.

    Looking down above units one through five within Drax Power Station

    Looking down above units one through five within Drax Power Station

    A new report by Frontier Economics for Drax highlights BECCS as a necessary cornerstone of UK decarbonisation and its wider impacts on a net zero economy. Developing a first-of-a-kind BECCS power plant would have ‘positive spillover’ effects that contribute to wider decarbonisation, green growth and the UK’s ability to meet its legally-binding climate commitments by 2050.

    Drax has a unique opportunity to fit carbon capture and storage (CCS) equipment to its existing biomass generation units, to turn its North Yorkshire site into what could be the world’s first carbon negative power station.

    Plans are underway to build a CO2 pipeline in the Yorkshire and Humber region, which would move carbon captured from at Drax out to a safe, long-term storage site deep below the North Sea. This infrastructure would be shared with other CCS projects in the Zero Carbon Humber partnership, enabling the UK’s most carbon-intensive region to become the world’s first net zero industrial cluster.

    Developing BECCS can also have spillover benefits for other emerging industries. Lessons that come from developing and operating the first BECCS power stations, as well as transport and storage infrastructure, will reduce the cost of subsequent BECCS, negative emissions and other CCS projects.

    Hydrogen production, for example, is regarded as a key to providing low, zero or carbon negative alternatives to natural gas in power, industry, transport and heating. Learnings from increased bioenergy usage in BECCS can help develop biomass gasification as a means of hydrogen production, as well as applying CCS to other production methods.

    The economic value of these positive spillovers from BECCS can be far reaching, but they will not be felt unless BECCS can achieve a robust business model in the immediate future.

    With a 58% reduction in the carbon intensity of power generation, the UK’s electricity has decarbonised twice as fast as that of other major economies. As the UK pushes towards its goal of achieving net zero emissions by 2050, new technologies are needed, and the market must extend to enable innovation.

    Designing a BECCS business model

    The Department for Business Energy and Industrial Strategy (BEIS) outlined several key factors to consider in assessing how to make carbon capture, usage and storage (CCUS) economically viable. These are also valid for BECCS development.

    Engineers working within the turbine hall, Drax Power Station

    Engineers working within the turbine hall, Drax Power Station

    One of the primary needs for a BECCS business model is to instil confidence in investors – by creating a policy framework that encourages investors to back innovative new technologies, reduces risk and inspires new entrants into the space. The cost of developing a BECCS project should also be fairly distributed among contributing parties ensuring that costs to consumers/taxpayers are minimised.

    Building from these principles there are three potential business models that can enable BECCS to be developed at the scale and in the timeframe needed to bring the UK to net zero emissions in 2050.

    1. Power Contract for Difference (CfD):
      By protecting consumers from price spikes, and BECCS generators and investors from market volatility or big drops in the wholesale price of power, this approach offers security to invest in new technology. The strike price could also be adjusted to take into account negative emissions delivered and spillover benefits, as well as the cost of power generation.
    2. Carbon payment:
      Another approach is contractual fixed carbon payments that would offer a BECCS power station a set payment per tonne of negative emissions which would cover the operational and capital costs of installing carbon capture technology on the power station. This would be a new form of support, and unfamiliar to investors who are already versed in CfDs. The advantage of introducing a policy such as fixed carbon payment is its flexibility, and it could be used to support other methods of GGR or CCS. The same scheme could be adjusted to reward, for example, CO2 captured through CCS in industry or direct air carbon capture and storage (DACCS). It could even be used to remunerate measurable spillover benefits from front-running BECCS projects.
    3. Carbon payment + power CfD:
      This option combines the two above. The Frontier report says it would be the most effective business model for supporting a BECCS in power project. Carbon payments would act as an incentive for negative emissions and spillovers, while CfDs would then cover the costs of power generation.
    Cost and revenue profiles of alternative support options

    Cost and revenue profiles of alternative support options based on assuming a constant level of output over time.

     Way to go, hybrid!

    Why does the hybrid business model of power CfD with carbon payment come out on top? Frontier considered how easy or difficult it would be to transition each of the options to a technology neutral business model for future projects, and then to a subsidy free business model.

    By looking ahead to tech neutrality, the business model would not unduly favour negative emissions technologies – such as BECCS at Drax – that are available to deploy at scale in the 2020s, over those that might come online later.

    Plus, the whole point of subsidies is to help to get essential, fledgling technologies and business models off to a flying start until the point they can stand on their own two feet.

    The report concluded:

    • Ease of transition to technology neutrality: all three options are unlikely to have any technology neutral elements in the short-term, although they could transition to a mid-term regime which could be technology neutral; and
    • Ease of transition to subsidy free: while all of the options can transition to a subsidy free system, the power CfD does not create any policy learnings around treatment of negative emissions that contribute to this transition. The other two options do create learnings around a carbon payment for negative emissions that can eventually be broadened to other GGRs and then captured within an efficient CO2 market.

    ‘Overall, we conclude that the two-part business model performs best on this criterion. The other two options perform less well, with the power CfD performing worst as it does not deliver learnings around remunerating negative emissions.’

    Assessment of business model options

    Assessment of business model options. Green indicates that the criteria is largely met, yellow indicates that it is partially met, and red indicates that it is not met.

    Transition to a net zero future

    Engineer inspects carbon capture pilot plant at Drax Power Station

    Engineer inspects carbon capture pilot plant at Drax Power Station

    Crucial to the implementation of BECCS is the feasibility of these business models, in terms of their practicality in being understood by investors, how quickly they can be put into action and how they will evolve or be replaced in the long-term as technologies mature and costs go down. This can be improved by using models that are comparable with existing policies.

    These business models can only deliver BECCS in power (as well as other negative emissions technologies) at scale and enable the UK to reach its 2050 net zero target, if they are implemented now.

    Every year of stalling delays the impact positive spillovers and negative emissions can have on global CO2 levels. The UK Government must provide the private sector with the confidence to deliver BECCS and other net zero technologies in the time frame needed.

    Go deeper

    Explore the Frontier Economics report for Drax, ‘Supporting the deployment of Bioenergy Carbon Capture and Storage (BECCS) in the UK: business model options.’