Tag: wind power

How Great Britain’s breakthrough year for renewables could have powered the past

After a year of smashing renewable records, Great Britain’s electricity system is less dependent on fossil fuels than ever before. Over the course of 2017, low-carbon energy sources, including nuclear as well as renewables, accounted for half of all electricity production.

The finding comes from Electric Insights, a quarterly research paper on Britain’s power system, commissioned by Drax and written by researchers from Imperial College London. The latest report highlights how Great Britain’s electricity system is rapidly moving away from fossil fuels, with coal and gas dropping from 80% of the electricity mix in 2010 to 50% in 2017.

It’s an impressive change for eight years, but it’s even more dramatic when compared to 60 years ago.

Powering the past with renewables

In 2017 renewable output grew 27% over 2016 and produced 96 terawatt hours (TWh) of electricity –  enough to power the entire country in 1958.

Back then Great Britain was dependent on one fuel: coal. It was the source of 92% of the country’s power and its high-carbon intensity meant emissions from electricity generation sat at 93 million tonnes of carbon dioxide (CO2). Compare that to just three million tonnes of CO2 emissions from roughly the same amount of power generated in 2017, just by renewables.     

Today the electricity system is much more diverse than in 1958. In fact, with nuclear added to renewable generation, 2017’s total low-carbon capacity produced enough power to fulfil the electricity needs of 1964’s Beatlemania Britain.

But what’s enabled this growth in renewable generation? One answer, as Bob Dylan explained a year earlier, is blowin’ in the wind.

Read the full article here: Powering the past.


Stormy weather powering Great Britain

Wind power experienced a watershed year in 2017. Thanks to blusterier weather and a wave of new wind farm installations coming online, wind generation grew 45% between 2016 and 2017.

Windfarms, both onshore and offshore, produced 15% of the entire country’s electricity output in 2017, up from 10% in 2016. The 45 TWh it generated over the course of the year was almost double that of coal – and there’s potential for this to increase in 2018 as more capacity comes online.

The 1.6 gigawatts (GW) of new offshore wind turbines installed in Great Britain last year accounted for 53% of the net 3.15 GW installed across Europe. With large offshore farms at Dudgeon and Race Bank still being commissioned, the 3.2 GW of total new operating capacity registered in 2017 across offshore as well as onshore wind is on course to grow.

Co-author of the article, RenewableUK’s Head of External Affairs Luke Clark, said:

“These figures underline that renewables are central to our changing power system. Higher wind speeds and a jump in installed capacity drove a dramatic increase in the amount of clean power generated. Alongside breaking multiple records for peak output, wind energy continued to cut costs.”

As wind power is dependent on weather conditions, it is intermittent in its generation. But in 2017, more than one storm offered ideal conditions for wind turbines. During Q4 there were three named storms as well as the remnants of a hurricane all battering the British Isles, all of which helped push average wind speeds 5% higher than in 2016. While calculating wind power based on wind speed is complex, windier weather means more power – monthly average wind speed is proportional to monthly average power output from wind farms.

While the 2017 annual average wind speed of 10.1mph, was in line with the country’s long-term average, wind generation was not consistent across the year. In Q4 wind output was close to an average of 7 GW. By contrast, between May and August it was closer to 4 GW. Thankfully these calmer months saw longer hours of daylight, allowing solar power to compensate.

Read the full article here: Wind power grows 45%


Driving down carbon emissions

The knock-on effect of an increase in renewable generation is a drop in the carbon intensity of electricity production and in 2017 this reached a new low.

Across the year, carbon emissions, including those from imported sources, totalled 72 million tonnes, down 12% from 2016. This decrease is equal to 150 kg of CO2 saved per person, or taking 4.7 million cars off the roads. The least carbon intensive period of the quarter came just after midnight in the early hours of Monday 2 October, when it measured a record low of 56 grammes per kilowatt hour (g/kWh) thanks to low fossil fuel generation and high levels of renewables.

Over the whole year there were 139 hours when carbon intensity dipped below 100 g/kWh. This generally required 50% of the electricity mix to come from renewable sources and demand to be lower than 30 GW. For carbon intensity to dip under 100 g/kWh on a more permanent basis, greater renewable capacity will be required as demand rises.

Read the full article here: Carbon emissions down 12%


Interconnectors meeting future demand

Electricity demand in Great Britain has been on the decline since 2002, primarily due to more efficient buildings and appliances, and a decline in heavy manufacturing. However, this is expected to change over the coming years as more electric vehicles are introduced and the heating system is electrified to help meet 2050 carbon emissions targets.

While installing greater renewable capacity will be crucial in meeting this demand with low-carbon power, interconnectors will also play a significant role, particularly from France, which boasts a large nuclear (and low-carbon) capacity.

However, electricity sales through interconnectors are often based on day-ahead prices rather than the live market, which can lead to trades that aren’t reflective of demand on each sides of the channel.

In Q4 there were eight half-hours when demand was very high (more than 50 GW), yet power was being exported. This occurred despite day-ahead prices suggesting traders would lose money due to lower demand in France and the cost of using the interconnector. It highlights the need for improvements in inter-network trading as Great Britain increases its intermittent renewable generation and looks to a greater reliance on importing and exporting power.

Read the full article here: Moving electricity across the channel


Great Britain’s electricity system continues to break its renewable records each year and heading into 2018 this is likely to continue. Wind and solar power will continue to grow as more installations come online and a fourth coal unit at Drax will be upgraded to sustainable biomass, which could lead to another breakthrough year. Regardless, 2017 will be a tough one to beat.

Explore the data in detail by visiting ElectricInsights.co.uk

Commissioned by Drax, Electric Insights is produced independently by a team of academics from Imperial College London, led by Dr Iain Staffell and facilitated by the College’s consultancy company – Imperial Consultants.

The people-powered renewables revolution

For decades the electricity system was relatively straightforward. Power was generated by utility companies, then sold and supplied to consumers and businesses. But this is changing and the power industry may be on the verge of a revolution.

The falling costs and ongoing innovation around technologies like rooftop solar panels and domestic battery storage is enabling the rise of so-called ‘prosumers’ – individuals, businesses or institutions who not only consume electricity, but produce it too.

According to the National Grid’s 2017 Future Energy Scenarios report, this could lead to an almost entirely decentralised, cleaner energy system.

But for this to happen, prosumerism needs to be adopted at scale, and this relies on technological innovation and changes to attitudes and behaviours.

The technology powering prosumers

The biggest barrier to large-scale adoption of prosumerism is technology. Although research and innovation pounds, dollars and euros have been pouring into the technologies that make decentralised power generation possible, there are still developments to be made.

Solar is one of the most prominently used renewables by prosumers thanks to the relative affordability of rooftop solar systems. Even home-interior giant IKEA now offers solar panels and battery systems through a partnership with the UK’s largest solar company, Solarcentury.

But like wind turbines (a more cost-prohibitive solution) solar is an intermittent energy source, which means domestic users may still need to access the grid to fill gaps in their own generation. That is, unless battery technology advances to a point where it can store enough solar- or wind-generated electricity to fully power homes and businesses affordably – all-year round, including in the dark, still days of midwinter.

Until then, a prosumer who wants to have a reliable, flexible self-supply of energy needs to be able to call on a mix of renewable technologies – just as the national system does. Hamerton Zoo in Cambridgeshire, for example, generates its own energy via a mix of solar, wind and biomass. It then sells its excess electricity to an energy supplier.

There are signs that battery technology is starting to take off as an option for powering homes and businesses. Tesla’s Powerwall is currently the closest home battery system to breaking through to mainstream consumers and many firms are following its lead. For example, in the UK, Elon Musk’s company faces new competition from Nissan, which is partnering with US power firm Eaton to build and sell home batteries in the UK. That two electric car manufacturers are in on the act is no surprise – it will be another revolution, that of electric vehicles (EVs) usurping the dominance of petrol and diesel models that is set to bring the boon that batteries need to become a popular choice for prosumers.

The government is also pushing innovation in the space with business and energy secretary Greg Clark announcing plans to invest £264 million into research in the sector over the next four years.

Energy ownership

But what could this mean for the business of electricity? The National Grid report suggests multiple ‘commercial models’ will operate together to facilitate a decentralised, prosumer-based energy system.

These would include homes and businesses who wholly own their energy systems, as well as systems owned and operated by third parties such as aggregators managing energy or solar-rental schemes.

Community-owned projects could also play a role, with small renewable energy facilities supplying residents, such as the wind turbine in the Cambridgeshire village of Gamlingay. Excess energy could also be sold back to the grid with any money earned reinvested in the community, or in its renewable infrastructure.

Similar schemes are already in place in both the business and consumer retail markets. In 2016, for example, Opus Energy – a Drax Group company supplying energy to UK businesses – bought almost 1 TWh of power from over 2,000 small renewable generators who use technologies such as anaerobic digestion, solar, onshore wind and hydro. Opus Energy then sells that power onto its predominantly small and medium-sized enterprise (SME) customer base. This allows it to offer innovative tariffs such as the 100% solar power deal enjoyed by restaurant chain LEON this summer.

Haven Power, the Drax retail business specialising in electricity supply for large corporate and industrial clients, sells on power from over 20 small renewable generators – and it has a number of large clients such as water utilities who self-generate a lot of their own power and work with Haven Power to help manage their self-supply against their demand from regional electricity distribution networks (and further upstream, National Grid and power stations).

For large power generators, an increase in prosumerism in the energy sector could mean likely overall demand may decrease, which would mean a scaling back of operations. However, the increased volatility of the grid will give rise to the need for flexibility and for additional ancillary services like frequency response, which ensures the country’s electricity is all operating at the same frequency.

This would most likely be delivered by flexible generators (such as gas and biomass), which would also be required for winter demand, when more electricity is required and there is less wind and solar generation.

The role of government incentives

Another key part of the rise of consumer generated power will be government regulation and incentive schemes. In the UK, new measures have been put in place to encourage individuals to generate their own electricity.

These intend to make it easier for prosumers to generate their own power through solar, store it in batteries and sell it back to the National Grid, something which regulator Ofgem claims could save consumers between £17 billion and £40 billion by 2050. This isn’t the only scheme of its kind currently in action.

The UK’s Renewable Heat Incentive (RHI) encourages homeowners and businesses to adopt low-carbon heating, offering to pay a certain amount for every kWh of renewable heat generated. Feed-in tariffs, on the other hand, also offer financial incentives, with electricity suppliers paying prosumers for the energy they produce themselves.

Is my home or business big enough?

The prosumer revolution will not happen overnight. Self-generation and self-storage of power and the installation of renewable heat systems are more suited to larger properties or those linked up to community-based projects, so for many people living in properties they own, rent or in social housing the idea of becoming a prosumer could right now be a little far-fetched.

And although there is evidence that the national transmission grid is already decentralising, nor will this revolution mean the complete eradication of all centralised utilities.

Through gradual improvements in small-scale energy generation, power storage, smart technology and government policies, it will become an increasingly affordable and efficient way for communities, businesses and institutions to go green.

Why you shouldn’t be surprised by another record-breaking quarter for renewable energy

Field of solar panels shot from above

It’s been another record-breaking quarter for Britain’s power system. During the first three months of 2017, biomass, wind and hydro all registered their highest energy production ever, while solar recorded its highest ever peak output.

And while this is all worth celebrating, it shouldn’t come as a surprise – the last few years have seen Britain’s power system take several significant steps toward decarbonisation and this year is no different. Electric Insights, the quarterly report on Britain’s power system by Dr Iain Staffell from Imperial College London, commissioned by Drax via Imperial Consultants, documents the new gains and confirms the trend: renewables are fast becoming the new norm and in 2017 they continued their growth.

Biomass domes at Drax Power Station

The renewable record breakers

Over this quarter biomass electricity generation hit a record production figure of 4.4 TWh, which means that biomass generators ran at 95% of full capacity – higher than any other technology has achieved over the last decade.

Hydro went 4% better than its previous energy production best by generating 1.6 TWh, while Britain’s wind farms produced 11.3 TWh (10% higher than the previous record, set in 2015). This was helped in part by several new farms being built which increased installed capacity by 5% over last year, but it was also indebted to the mild, windy weather.

Wind farms produced more electricity than coal, 57 days out of 90 during the first three months of 2017

Solar hit a new record peak output at the end of March, when it generated 7.67 GW – enough to power a fifth of the country. In fact, during the last weekend of March, for the first time ever, the country’s demand for electricity from the national grid was lower during an afternoon than during the night. This was because solar panels, which only generate power when the sun is up, tend to sit outside of the national high voltage transmission grid.

Understanding how this happened is to understand how solar energy is changing our national power system.

A reverse of the trend

Electricity demand on the national grid – think of it as the power system’s motorways – is typically higher during the day and early evening (when people are most active, using lights and gadgets) than overnight. However, on the last weekend in March 2017, the opposite was true because of how much solar energy was generated.

Solar panels and some smaller onshore windfarms are ‘invisible’ – they don’t feed into the national grid. Instead, these sources either feed into the regional electricity distribution networks – the power system’s A and B roads – or, as many of them are on people’s roofs and used in their own homes or business premises, it never gets down their driveway. This can mean when solar panels are generating a lot of electricity, there is a lower demand for power from the grid, making it appear that less of the country is using electricity than it actually is.

This was the case during the last weekend of March, when solar generated enough power to satisfy a large part of Britain’s demand. And while this is another positive step towards a lower carbon energy mix, it is about to change the way our power system works, particularly when it comes to the remaining coal power stations.

What the power system needs to provide, today and in the future, is flexibility – to ramp up and down to accommodate for the shifting demand based on supply of intermittent – weather dependent – renewables. Thermal power stations such as gas, coal and biomass can meet much of this demand, but even more rapid response from technologies such as the Open Cycle Gas Turbines that Drax is developing and batteries could fulfil these needs quicker.

Today’s dirty is yesterday’s clean

The record breaking and increased renewable generation of the period from January to March 2017 would mean nothing if it wasn’t matched by a decrease in emissions. During the first three months of 2017, emissions dropped 10% lower than the same period in 2016 and a massive 33% lower than 2015. Coal output alone fell 30% this quarter compared to Q1 2016.

To put the scale of this progress into context we need only look at the quarter’s ‘dirtiest hour’ – the hour in which carbon intensity from electricity generation is at its highest. Between January and March, it peaked on a calm and cold January evening with 424 grams of CO2 released per kWh (g/kWh). The average for generation between 2009 and 2013 was 471 g/kWh. In short, this quarter’s dirtiest hour was cleaner than the average figure just four years ago – yesterday’s average is today’s extremity.

If we want to continue to break records and further progress towards a fully decarbonised power system, this needs to be a consistent aim: making the averages of today tomorrow’s extremes.

Top line stats

Highest energy production ever

  • Wind – 11.3 TWh
  • Biomass – 4.4 TWh
  • Hydro – 1.6 TWh

Record peak output

  • Solar – 7.67 GW
  • Enough to power 1/5 of the country

Yesterday’s average is today’s extremity

  • Average carbon emissions per kWh – 2009-2013
    • 471 g/kWh
  • Average carbon emissions per kWh – Q1 2017
    • 284 g/kWh
  • Peak carbon emissions per kWh – 2009-2013
    • 704 g/kWh
  • Peak carbon emissions per kWh – Q1 2017
    • 424 g/kWh

 

Explore the data in detail by visiting ElectricInsights.co.uk

Commissioned by Drax, Electric Insights is produced independently by a team of academics from Imperial College London, led by Dr Iain Staffell and facilitated by the College’s consultancy company – Imperial Consultants.

The cleanest year in Britain’s electricity

Cleanest year in Britain's electricity history

Amid the political upheaval that is characterising 2016 you may have missed the quiet victory of the UK’s low-carbon energy sector: for the first time ever, the third quarter (Q3) of 2016 saw more than 50% of the Britain’s power come from low-carbon energy sources. Five years ago, low-carbon sources made up just over a quarter.

This doesn’t necessarily mean that renewable energy sources made up the full 50% – in fact, nuclear made up a considerable chunk – but it hints at the big changes we’re seeing in the way the country is sourcing its power.

For one, it’s a further sign of coal’s diminishing life. During the period July to September 2012 coal supplied 38% of Britain’s electricity – during this year’s Q3 it supplied just 3%. As a result, per-unit carbon emissions from electricity consumption are at their lowest levels ever. The Carbon Price Floor – also known as the carbon tax and designed to assist energy companies like Drax invest in renewable and lower carbon generation – has played a big role in reducing coal’s contribution.

The findings come from Electric Insights, an independent report produced by researchers from Imperial College London and commissioned by Drax, that looks at the UK’s publicly available electricity data and aims to inform the debate on Britain’s electricity system.

Beyond the continued decline of coal, it shows there’s a growing diversity in low-carbon energy sources fuelling the country and that there’s a positive outlook for a cleaner electricity future.

Here we look at those low-carbon sources and how their use has changed over the last five years.

Nuclear produces 26% of Britain's power (Q3, 2016)

Nuclear

At 26% of the total, nuclear made up the largest proportion of low-carbon power generation across Q3 2016.

That was good news for the sector, which went through a turbulent summer after plans for the Hinkley Point C reactor were momentarily threatened following the dissolution of the Department for Energy and Climate Change (DECC) after the Brexit vote.

The eventual decision to continue with Hinkley C, however, means that more baseload nuclear power, in the form of large power stations and also possibly small modular nuclear reactors (SMRs), will be coming on to the system in the coming years. They will in the main replace older nuclear power stations set to be decommissioned.

Wind produces 10% of Britain's power (Q3, 2016)

Wind

Wind power made up 10% of total low-carbon power generation between July and September, and was the largest renewable source of the quarter.

As recently as 2011, electricity generated by wind accounted for just 4% of Britain’s low carbon energy supplies – a 150% increase in just five years. This is in part due to huge offshore projects such as the 630 MW London Array in the Thames Estuary and the 576MW Gwynt y Môr situated off the coast of North Wales, which have contributed to bringing the UK’s installed capacity to around 14 GW

The UK is now the world’s sixth largest producer of wind power behind China, the USA, India, Germany and Spain.

Solar produces 5% of Britain's power (Q3, 2016)

Solar

Following wind power as the second largest renewable contributor to the country’s low-carbon energy needs was solar.

Five years ago solar’s contribution was so negligible it didn’t even chart in the Electric Insights data. Fast forward to 2016 and Britain has a total installed solar capacity of nearly 10 GW. Again, this places the country sixth in the world for capacity behind China, Germany, Japan, the USA and Italy.

Biomass produces 4% of Britain's power (Q3, 2016)

Biomass

Biomass – a unique low-carbon fuel in that it can deliver both baseload and flexible power – made up 4% of the UK’s power needs in Q3 2016. A good proportion of that came from Drax, which has over the last five years been upgrading from coal to run on compressed wood pellets.

Like solar, biomass generation didn’t even chart in 2011, but today. In fact, between July and September biomass, along with solar and wind, supplied 20% of the country’s electricity – a huge proof point for the rise of renewables. Where biomass sits apart from those two sources, however, is that it isn’t dependent on weather and even though the country has less much less biomass generation capacity than the two intermittent technologies, it produces nearly as much energy as them. This makes it an ideal baseload partner for sources that do (i.e. wind and solar) as it can be dialled up and down to meet the energy demand of the country in seconds.

In the future there’s potential to increase this biomass capacity while saving bill payers money. Three of Drax’s six generating units run on biomass, but if all were to be upgraded as they could be in less than three years – Drax plus Lynemouth power station and one or two smaller biomass power stations – could generate roughly 10% of Britain’s electricity using compressed wood pellets by the time unabated coal power stations come off the system before the end of 2025.

Hydro produces 1% of Britain's power (Q3, 2016)

Hydro

Hydropower made up just 1% of Britain’s power generation over the quarter. However, this is still up by 20% since 2011, when hydropower contributed just 0.8%. Total installed hydropower capacity is around 1.65GW.

However, studies have found the country has a potential hydropower capacity of close to double this amount, but as many of these sources are located in mountainous, rural landscape areas of natural importance, it’s doubtful whether hydropower will be deployed up to its full capabilities in the coming years.

Closing an historic year

May the 5th was an historic day in the UK – it was the first time since 1881 Britain burnt no coal to produce its electricity. It wasn’t an isolated incident, either. In the third quarter of 2016 Britain was completely coal free for nearly six days.

It’s a situation that is likely to continue in the future as low carbon energy sources – and in particular renewables – continue to grow in the country’s energy makeup. The outlook is a positive one. 2016 may have been the cleanest year in UK electricity we’ve seen so far, but it won’t be the cleanest year ever.

Explore the data in detail by visiting ElectricInsights.co.uk

Commissioned by Drax, Electric Insights is produced independently by a team of academics from Imperial College London, led by Dr Iain Staffell and facilitated by the College’s consultancy company – Imperial Consultants.

The 4 most common myths about renewables

Renewables make up more of the world’s energy mix than ever before. And yet, misconceptions about these new or alternative technologies – such as biomass, solar and wind – are common.

Some of these concerns are – for the time being – partly justified, some completely subjective, and some are demonstrably wrong. Here’s a closer look at the most pervasive myths and what truth there is behind them.

Renewables are unpredictable

An oft-repeated misconception is that renewables aren’t a full-time solution to our power needs. It’s true that solar isn’t generated at night and wind turbines don’t operate in still weather, but the canon of renewables is bigger than its two most well-known technologies.

Tidal power still depends on environmental factors, but tides are much more predictable than wind or sunlight. For countries lucky enough to have ready access, geothermal power – which uses heat from the earth’s core to power generators – is even more reliable.

Biomass solutions, such as compressed wood pellets, are a fuel-based power source, meaning they are flexible so can be used to generate electricity on demand and operate as a base-load power option, much like coal or gas. At Drax Power Station renewable electricity is generated on demand using compressed wood pellets and delivered to the National Grid 24-hours-a-day.

Now, thanks to advances in weather forecasting, the National Grid can plan ahead to balance the system with other renewable and low carbon technologies when the sun isn’t shining and the wind isn’t blowing. Just a few years ago the primary fall back was relying on coal power stations to pick up any slack.

It might not be possible to power the world entirely with one renewable source, but the right mix of technologies could provide an answer to the question of how to ensure a stable and secure low carbon energy supply.

Heavenly Scene Stormy Skies

Renewables are expensive

There is some truth in this, but it’s important to note that these costs are falling. Many of the high costs associated with renewables have been down to a lack of infrastructure investment.

A number of the components required in construction of structures like wind turbines and solar panels are expensive. And, as many renewable facilities need to be located in different areas to existing traditional facilities, extensive power grid extension is often needed. But these are problems that once set up, should bring down the costs of renewables such as solar and wind.

Setting up biomass-powered facilities is considerably cheaper. Compressed wood pellets can be used in upgraded coal power stations, so there’s no need for expensive new connections to the high-voltage electricity transmission system.

There are even ways renewables could bring about cheaper power for consumers. Research commissioned by Drax and published by NERA Economic Consulting and Imperial College London found that, if the same government support offered to some renewable technologies (i.e. wind and solar) were open to all (such as biomass), consumers could see potential savings of £2 billion on their energy bills.

Renewables are ugly

While this isn’t necessarily an opinion shared by everyone, it is one that is often cited. Onshore wind farms often draw the most ire, but they aren’t alone. Large investments are being made in offshore wind farms, which are both more discrete and better positioned to take advantage of stronger offshore currents.

And hydropower projects like dams and tidal barrages can in the long term create whole new habitats, ecosystems and leisure facilities in the form of artificial lakes and surrounding forests.

Nobody uses renewables

In 2015, 99% of Costa Rica’s electricity came from renewable sources, including hydro, geothermal, wind, biomass and solar. Closer to home, Sweden draws more than 50% of its electricity from renewable sources, including 22% from bioenergy – 90% of which comes from forestry.

In the UK, renewables use is steady and rising, accounting for 25% of all electricity generated domestically in 2015. In the first half of 2016, 20% of the UK’s renewable power was supplied by Drax. Contrast those figures against coal, which in the UK declined from supplying 30.8% of UK power needs in Q1 2015 to just 15.8% in Q1 2016, and our increasing use of renewables is even more evident.

Consumers have been buying 100% renewable electricity tariffs from companies such as Good Energy for more than a decade. Businesses are increasingly getting in on the act too. Two thirds of the power generated by Drax in the first half of 2016 was sold directly to companies via Drax Group’s business electricity supplier, Haven Power.

And with campaigns such as RE100 challenging the world’s biggest firms to commit to renewable-only power, household brands such as Ikea, M&S and Google are either already 100% renewable or only a few years away.

Misconceptions about renewables will remain as long as we’re still in the transition out of fossil fuel use. But the industry has made huge strides from where it was just 10 years ago.

Thanks to better, more affordable technology, an increasingly friendly corporate sector, and a greater awareness of environmental issues at large, these products and services will continue to improve, grow and increasingly becoming more mainstream.

Rethinking the UK’s future energy mix

Since the Climate Change Summit in Paris, there’s been a lot of talk about how we can remove coal from the energy mix in the UK and limit further climate change.

One way would be to close down all the coal-fired power stations. But coal still provides more than 20 per cent of the UK’s electricity. And the Department for Energy and Climate Change (DECC) predicts we will need almost 20% more electricity by 2035, not less (chart, below). What’s more, building new capacity to replace those power stations would take years, while buying in extra supplies of energy at short notice can mean extra costs being passed on to customers.

The good news is that at Drax, we’ve already developed a solution to the challenge, as I told the Yorkshire Post recently.

We’re doing it by converting our coal-fired generating units to use compressed wood pellets. And we’re using world-beating technology developed by our own engineers here in the UK.

In fact, we’re now producing more electricity from wood pellets than from coal at Drax. And we’re doing it day in day out. In all, around four per cent of the UK’s entire electricity needs every single day of the year are now being met thanks to our unique biomass technology at Drax.

This enables us to take low-grade wood and compress it into small high-density pellets to use in our specially adapted generating units. Even including a minimal quantity of carbon emissions in the supply chain, conversions still cut greenhouse gases by over 80% compared to coal.

If we can get the support to convert the other three generating units at the power station then we’ll cease using coal at Drax. This would help the government’s proposed target date of ending unabated coal electricity generation in the UK by 2025.

I think at a very high level that support is there.

We all know that wind and solar energy have the potential to take a bigger role in Britain’s energy mix. But, to do so, they need to be accompanied by another technology that can be turned up to fill gaps when the weather means they produce less energy than required.

Our high-density wood pellets are the only non-fossil fuel that can do this. Looking to the future, as wind and solar grow and Britain becomes more dependent on them, it will be ever more important to have this reliable, renewable support on hand.

We’re well behind our European neighbours in using wood pellets for energy, and a long way behind countries like Germany and Sweden. Taking steps to catch up with the European average is the fastest, most affordable and most reliable way to move away from coal to the renewable fuels of the future. To take those steps, energy companies like Drax and the Government need more dialogue.