Tag: engineering

Breaking circuits to keep electricity safe

Electric relay with sparks jumping between the contacts doe to breaking a heavy inductive load.

Electricity networks around the world differ many ways, from the frequency they run at to the fuels they’re powered by, to the infrastructure they run on. But they all share at least one core component: circuits.

A circuit allows an electrical current to flow from one point to another, moving it around the grid to seamlessly power street lights, domestic devices and heavy industry. Without them electricity would have nowhere to flow and no means of reaching the things it needs to power.

But electricity can be volatile, and when something goes wrong it’s often on circuits that problems first manifest. That’s where circuit breakers come in. These devices can jump into action and break a circuit, cutting off electricity flow to the faulty circuit and preventing catastrophe in homes and at grid scale. “All this must be done in milliseconds,” says Drax Electrical Engineer Jamie Beardsall.

But to fully understand exactly how circuit breakers save the day, it’s important to understand how and why circuits works.

Circuits within circuits 

Circuits work thanks to the natural properties of electricity, which always wants to flow from a high voltage to a lower one. In the case of a battery or mains plug this means there are always two sides: a negative side with a voltage of zero and a positive side with a higher voltage.

In a simple circuit electricity flows in a current along a conductive path from the positive side, where there is a voltage, to the negative side, where there is a lower or no voltage. The amount of current flowing depends on both the voltage applied, and the size of the load within the circuit.

We’re able to make use of this flow of electricity by adding electrical devices – for example a lightbulb – to the circuit. When the electricity moves through the circuit it also passes through the device, in turn powering it. 

A row of switched on household electrical circuit breakers on a wall panel

A row of switched on household electrical circuit breakers on a wall panel

The national grid, your regional power distributor, our homes, businesses and more are all composed of multiple circuits that enable the flow of electricity. This means that if one circuit fails (for example if a tree branch falls on a transmission cable), only that circuit is affected, rather than the entire nation’s electricity connection. At a smaller scale, if one light bulb in a house blows it will only affect that circuit, not the entire building.

And while the cause of failures on circuits may vary from fallen tree branches, to serious wiring faults to too many high-voltage appliances plugged into a single circuit, causing currents to shoot up and overload circuits, the solution to preventing them is almost always the same. 

Fuses and circuit breakers

In homes, circuits are often protected from dangerously high currents by fuses, which in Great Britain are normally found in standard three-pin plugs and fuse boxes. In a three pin plug each fuse contains a small wire – or element.

One electrical fuse on electronic circuit background

An electrical fuse

When electricity passes through the circuit (and fuse), it heats up the wire. But if the current running through the circuit gets too high the wire overheats and disintegrates, breaking the circuit and preventing the wires and devices attached to it from being damaged. When a fuse like this breaks in a plug or a fuse box it must be replaced. A circuit breaker, however, can carry out this task again and again.

Instead of a piece of wire, circuit breakers use an electromagnetic switch. When the circuit breaker is on, the current flows through two points of contact. When the current is at a normal level the adjacent electromagnet is not strong enough to separate the contact points. However, if the current increases to a dangerous level the electromagnet is triggered to kick into action and pulls one contact point away, breaking the circuit and opening the circuit breaker.

Another approach to fuses is using a strip made of two different types of metals. As current increases and temperatures rise, one metal expands faster than the other, causing the strip to bend and break the circuit. Once the connection is broken the strip cools, allowing the circuit breaker to be reset.

This approach means the problem on the circuit can be identified and solved, for example by unplugging a high-voltage appliance from the circuit before flipping the switch back on and reconnecting the circuit.

Protecting generators at grid scale 

Power circuit breakers for a high-voltage network

Circuit breakers are important in residential circuits, but at grid level they become even more crucial in preventing wide-scale damage to the transmission system and electricity generators.

If part of a transmission circuit is damaged, for example by high winds blowing over a power line, the current flow within that circuit can be disrupted and can flow to earth rather than to its intended load or destination. This is what is known as a short circuit.

Much like in the home, a short circuit can result in dangerous increases in current with the potential to damage equipment in the circuit or nearby. Equipment used in transmission circuits can cost millions of pounds to replace, so it is important this current flow is stopped as quickly as possible.

“Circuit breakers are the light switches of the transmission system,” says Beardsall.

“They must operate within milliseconds of an abnormal condition being detected. However, In terms of similarities with the home, this is where it ends.”

Current levels in the home are small – usually below 13 amps (A or ampere) for an individual circuit, with the total current coming into a home rarely exceeding 80A.

In a transmission system, current levels are much higher. Beardsall explains: “A single transmission circuit can have current flows in excess of 2,000A and voltages up to 400,000 Volts. Because the current flowing through the transmission system is much greater than that around a home, breaking the circuit and stopping the current flow becomes much harder.”

A small air gap is enough to break a circuit at a domestic level, but at grid-scale voltage is so high it can arc over air gaps, creating a visible plasma bridge. To suppress this the contact points of the circuit breakers used in transmission systems are often contained in housings filled with insulating gases or within a vacuum, which are not conductive and help to break the circuit.

A 400kV circuit breaker on the Drax Power Station site

A 400kV circuit breaker on the Drax Power Station site

In addition, there will often be several contact points within a single circuit breaker to help break the high current and voltage levels. Older circuit breakers used oil or high-pressure air for breaking current, although these are now largely obsolete.

In a transmission system, circuit breakers will usually be triggered by relays – devices which measure the current flowing through the circuit and trigger a command to open the circuit breaker if the current exceeds a pre-determined value. “The whole process,” says Beardsall, “from the abnormal current being detected to the circuit breaker being opened can occur in under 100 milliseconds.”

Circuit breakers are not only used for emergencies though, they can also be activated to shut off parts of the grid or equipment for maintenance, or to direct power flows to different areas.

A single circuit breaker used within the home would typically be small enough to fit in your hand.  A single circuit breaker used within the transmission system may well be bigger than your home.

Circuit breakers are a key piece of equipment in use at Drax Power Station, just as they are within your home. Largely un-noticed, the largest power station in the UK has hundreds of circuit breakers installed all around the site.

A 3300 Volt circuit breaker at Drax Power Station

A 3300 Volt circuit breaker at Drax Power Station

“They provide protection for everything from individual circuits powering pumps, fans and fuel conveyors, right through to protecting the main 660 megawatt (MW) generators, allowing either individual items of plant to be disconnected or enabling full generating units to be disconnected from the National Grid,” explains Beardsall.

The circuit breakers used at Drax in North Yorkshire vary significantly. Operating at voltages from 415 Volts right up to 400,000 Volts, they vary in size from something like a washing machine to something taller than a double decker bus.

Although the size, capacity and scale of the circuit breakers varies dramatically, all perform the same function – allowing different parts of electrical circuits to be switched on and off and ensuring electrical system faults are isolated as quickly as possible to keep damage and danger to people to a minimum.

While the voltages and amount of current is much larger at a power station than in any home, the approach to quickly breaking a circuit remains the same. While circuits are integral parts of any power system, they would mean nothing without a failsafe way of breaking them.

6 disused power stations renovated and reimagined

E-WERK entrance

The Tate Modern and Battersea Power Station along the banks of the Thames are architectural icons of the London skyline. But before they were landmarks, they were oil- and coal-burning power stations, right in the heart of the city they powered.

As the city developed, the technology used to generate power advanced, and the need for cleaner fuel sources grew, the requirement for large, city-based fossil fuel power stations like these fell. The closure of Battersea and the Bankside power stations became inevitable.

Rather than knocking them down, however, it was clear their scale, heritage and location could be repurposed to meet an entirely new set of needs for the city. Now, as an art gallery and modern, mixed-use neighbourhood space, they remain in service to the city while retaining part of their heritage.

Eindhoven’s Innovation Powerhouse, Netherlands

Eindhoven’s Innovation Powerhouse, Netherlands. Photo: Tycho Merijn.

The reimagining of disused power stations is not just a London phenomenon. It is one seen around the world, where industrial buildings like these are being transformed for a range of purposes.

Eindhoven’s Innovation Powerhouse

Eindhoven’s Innovation Powerhouse in the Netherlands remains distinguishable as a power station due to its enormous coal chimneys, but today it serves a different purpose. The original skeleton of the building has been repurposed as a creative office space for innovative tech companies. The open plan structure encourages collaboration and creativity and its location right in the city centre makes it easily accessible to employees. In a nod to its previous use, however, a biogas plant remains situated next door, burning wood waste to produce renewable electricity and heat for the building.

Beloit’s cultural ‘Powerhouse’

Like Innovation Powerhouse, the exterior of Blackhawk Generating Station in Beloit, Wisconsin remains clearly identifiable as a power station. A century ago the once gas-fired plant supplied peak-time electricity to surrounding cities, but since being bought by Beloit University, it’s being transformed into ‘The Powerhouse’– a leisure and cultural centre for both students and the general public. Designs include an auditorium, a health and wellness hub, a swimming pool, lecture halls and more. It sits along the Rock River, between the university and the city – a prime location for bringing communities together, and is due to open in January 2020.

CGI of The Powerhouse, Beloit College Wisconsin. Image: Studio Gang Architects

An artist’s impression of The Powerhouse, Beloit College Wisconsin. Photo: Studio Gang Architects.

The Tejo Power Station Electricity Museum, Lisbon, Portugal.

Lisbon’s electricity museum

The Tejo Power Station once supplied electricity to the whole of Lisbon. Today it’s a museum and art gallery, but remains a testament to Portugal’s technological, historical and industrial heritage. It pays homage to the evolution of electricity through a permanent collection that includes original machinery from its construction in 1908, and charts its evolution from baseload electricity generator to standby power station used only to complement the country’s prominent supply of hydro plants. It’s a space that celebrates the heritage of the building, an attitude reflected throughout Portugal – there is even an energy museums roadmap created for people to tour a trail of decommissioned power stations.

Rome’s renaissance power station

Centrale Montemartini Thermoelectric plant was Rome’s first public power station, operating between 1912-1963. Decommissioned in the 1960s, it was adapted to temporarily house an exhibition of renaissance sculptures and archaeological finds from Rome’s Capitoline Museums that were at the time undergoing renovation. The clash of the classical artworks and the power station’s original equipment was such a success that it has been open ever since.

Centrale Montemartini, Rome, Italy.

Berlin’s E-WERK Luckenwalde

Why replace a power station with an art gallery if it could in fact be both? Berlin’s E-WERK Luckenwalde is a hybrid – what was once a coal power plant before the collapse of communism in 1989, is now both a renewable power plant and an art gallery. It uses waste woodchips from neighbouring companies to generate and sell power to the grid to fund the cost of a contemporary art centre housed inside it. It still generates electricity, only this time it’s renewable and powers the art gallery, which in turn energises the artistic community of Berlin.

 

Copenhagen’s futuristic Amager Bakke Waste-to-Energy-Plant

 Copenhagen’s Amager Bakke Waste-to-Energy-Plant is one of the cleanest incineration plants in the world. Opened in 2017 to replace a nearby 45-year-old incineration plant, it burns municipal waste to create heat and power for the surrounding area. What really sets it apart, however, is its artificial ski slope cascading down one side of the building, which has been open to the public all year-round since October 2019. This purposefully bold design sets out to change people’s perceptions of what power stations can do.

CopenHill ski slope, Amager Bakke, Copenhagen, Denmark. Photos: Max Mestour.

CopenHill ski slope, Amager Bakke, Copenhagen, Denmark. Photos: Max Mestour.

The decommissioning of power stations has resulted in cities’ acquiring buildings in prime central locations for the public to enjoy. These examples demonstrate the world’s transition to renewable power, the advances of technology, and populations’ increasing awareness of the environmental impact of their energy usage.

Top image: Entrance of E-WERK Luckenwalde, 2019. Photo: Ben Westoby. Click here to view/download

How Scotland’s sewage becomes renewable energy

Stevie Gilluley Senior Operator at Daldowie fuel plant

From traffic pollution to household recycling and access to green spaces, cities and governments around the world are facing increasing pressure to find solutions to a growing number of urban problems.  

One of these which doesn’t come up often is sewage. But every day, 11 billion litres of wastewater from drains, homes, businesses and farms is collected across the UK and treated to be made safe to re-enter the water system.   

Although for the most part sewage treatment occurs beyond the view of the general population, it is something that needs constant work. If not dealt with properly, it can have a significant effect on the surrounding environment.  

Of the many ways that sewage is dealt with, perhaps one of the most innovative is to use it for energy. Daldowie fuel plant, near Glasgow is one such place which processes sewage sludge taken from the surrounding area into a renewable, low carbon form of biomass fuel.  

The solution in the sludge   

In operation since 2002, Daldowie was acquired by Drax at the end of 2018 and today processes 35% of all of Scotland’s wastewater sludge, into dry, low-odour fuel pellets.   

“We receive as much as 2.5 million tonnes of sludge from Scottish Water a year,” says Plant Manager Dylan Hughes who leads a team of 71 employees, “And produce up to 50,000 tonnes of pellets, making it one of the largest plants of this kind in the world.”  

“We have to provide a 24/7, 365-day service that is built into the infrastructure of Glasgow,” he explains.   

This sludge processed at Daldowie is not raw wastewater, which is treated in Scottish Water’s sewage facilities. Instead, the sludge is a semi-solid by-product of the treatment process, made of the organic material and bacteria that ends up in wastewater from homes and industry, from drains, sinks and, yes, toilets.   

Until the late 1990s, one of Great Britain’s main methods of disposing of sludge was by dumping it in the ocean. After this practice was banned, cities where left to figure out ways of dealing with the sludge.   

Using sludge as a form of fertiliser or burying it in landfills was an already established practice. However, ScottishPower, instead decided to investigate the potential of turning sludge into a dry fuel pellet, that could offer a renewable, low carbon substitute to coal at its power plants. 

Cement manufacturing fuel kilns

Daldowie was originally designed to supply fuel to Methil Power Station near Fife, which ran on coal slurry. However, it was decommissioned in 2000, before Daldowie could begin delivering fuel to it. This led the plant to instead provide fuel to Longannet Power Station where it was used to reduce its dependency on coal, before it too was decommissioned in 2016. 

Today Daldowie’s pellets are used in England and Scotland to fuel kilns in cement manufacturing – an industry attempting to navigate the same decarbonisation challenges as power generation which Daldowie was established to tackle.  

Though the end use of the fuel has changed, the process through which the facility transforms the waste remains the same.  

The process of turning waste to energy  

The process starts after wastewater from Glasgow and the surrounding area is treated by Scottish Water. Daldowie receives 90% of the sludge it processes directly via a pressurised sludge pipeline, the rest is delivered via sealed tanker lorries.   

When it arrives at Daldowie, the sludge is 98% water and 2% solid organic waste. It is first screened for debris before entering the plant’s 12 centrifuges, which act as massive spinning driers. These separate water from what is known as ‘sludge cake’, the semi-solid part of the sludge feedstock. This separated water is then cleaned so it can either be used elsewhere in the process or released into the nearby River Clyde. 

Membrane Tank at Daldowie fuel plant

The remaining sludge cake is dried using air heated to 450 degrees Celsius using natural gas (this also reduces germs through pasteurisation), while the rotating drums give the fuel granules their pellet shape. Once dried the pellets are cooled and inspected for quality. Any material not up to necessary standards is fed back into the system for reprocessing. Fuel that does meet the right standards is cooled further and then stored in silos.   

Where possible throughout the process, hot air and water are reused, helping keep costs down and ensuring the process is efficient.  

Nearly two decades into its life, very little has had to change in the way the plant operates thanks to these efficiencies. But while the process of turning the waste sludge into energy remains largely unchanged, there is, as always, room for new innovation 

 Improving for the future of the site 

Daldowie is contracted to recycle wastewater for Scottish Water until 2026. To ensure the plant is still as efficient and effective as possible, the Daldowie team is undertaking a technical investigation of what, if anything, would be needed to extend the life of the plant for at least an additional five years. 

“The plant operates under the highest environmental and health and safety standards but further improvements are being planned in 2020.” Hughes explains, “We are upgrading the odour control equipment to ensure we have a best in class level of performance.  

The control room and plant operators at Daldowie

“Drax’s Scotland office, in Glasgow, is working with other industrial facilities in the area, as well as the Scottish Environmental Protection Agency (SEPA), to work with the local community. We are putting in place a series of engagement events, including plant tours from early 2020, offering local residents an opportunity to meet the local team and discuss the planned improvements.”    

There are also other potential uses for the fuel, including use at Drax Power Station. As the pellets are categorised as waste and biomass, it would require a new license for the power station.  

However, at a time when there is a greater need to reduce the impact of human waste and diversify the country’s energy, it would add another source of renewable fuel to Great Britain’s electricity mix that could help to enable a zero carbon, lower cost energy future.  

The men who built a power station inside a mountain

Cruachan tunnel tigers

Travelling through the Highlands towards the West Coast of Scotland, you pass the mighty Ben Cruachan – its 1,126 metre peak towers over the winding Loch Awe beneath. It is the natural world on a huge scale, but within its granite core sits a manmade engineering wonder: Cruachan Power Station.

Opened by The Queen in 1965, it is one of only four pumped-hydro stations in the UK and today remains just as impressive an engineering feat as when it was first opened.

Cruachan is operated safely and hasn’t had a lost time injury in 15 years. The robust health and safety policies and practices employed at the power station were not in place all those decades ago.

It took six years to construct, enlisting a 4,000-strong workforce who drilled, blasted and cleared the rocks from the inside of the mountain, eventually removing some 220,000 cubic metres of rubble. The work was physically exhausting – the environment dark and dangerous.

Nicknamed the ‘Tunnel Tigers’, the men that carried the work out came from far and wide, attracted to its ambition as well as a generous pay packet reflective of the danger and difficulty of the work. But few of them were fully prepared for the extent of the challenge.

One labourer, who started at Cruachan just after his 18th birthday, recalls: “I was in for a shock when I went down there. The heat, the smoke – you couldn’t see your hands in front of you.”

Inside the mountain

The work of hollowing out Ben Cruachan was realised by hand-drilling two-to-three metre deep holes into the granite rockface. An explosive known as gelignite, which can be moulded by hand, was packed into the drilled holes and detonated. The blasted rocks were removed by bulldozers, trucks and shovels, before drilling began on the fresh section of exposed granite. In total, 20km of tunnels and chambers were excavated this way, including the kilometre-long entrance tunnel and the 91-metre-long, 36-metre-high machine hall.

Wilson Scott was just 18 when he got a job working as a labourer at Cruachan while the machine hall was being cleared out.

“The gelignite, it had a smell. Right away I was told not to put it near your face,” he says, “It’ll give you a splitting headache and your eyes will close with the fumes that come off it. It was scary stuff.”

This process allowed for rapid expansion through the mountain. With three or four blasts each 12-hour shift, some 20 metres of rock could be cleared in the course of a day. Activity was constant, and to save the men having to make the journey back up to the surface, refreshments came to them.

“There was a bus that went down the tunnel at 11 o’clock with a huge urn of terrible tea,” says Scott. “Most of the windows were out of the bus because the pressure of the blasting had blown them in.”

The tea did little to make the environment hospitable, however. From the water dripping through the porous rocks making floors slippery and exposed electrics vulnerable, to the massive machinery rushing through the dense dust and smoke, danger was ever-present. Loose rocks as large as cars would often fall from exposed walls and ceilings while the regular blasting gave the impression the entire mountain was shaking.

“I’ll tell you something: going into that tunnel the first time,” Scott says. “It was a fascinating place, but quite a scary place too.

Above them, on top of the mountain, a similarly intrepid team tackled a different challenge: building the 316-metre-long dam. They may have escaped the hot and humid conditions at the centre of Cruachan, but their task was no less daunting.

Cruachan dam construction, early 1960s

Cruachan dam construction, early 1960s

On top of the dam

Out in the open, 400 metres above Loch Awe, the team were exposed to the harsh Scottish elements. John William Ross came to Cruachan at the age of 35 to work as a driver and spent time working in the open air of the dam. “You’d get oil skins and welly boots, and that was it. We didn’t have gloves, if your hands froze – well that’s tough luck isn’t it.” Mr Ross sadly passed away recently.

Charlie Campbell, a 19-year-old shutter joiner who worked on the dam found an innovative way around the cold. “You’d put on your socks, and then you’d get women’s tights and you’d put them over the top of the socks, and then you’d put your wellies on and that’d keep your feet a wee bit warmer. We thought it did anyway. Maybe it was just the thought of the women’s stockings.”

Pouring the concrete of the dam – almost 50 metres high at its tallest point – was precarious work, especially given the challenges of working with materials like concrete and bentonite (a slurry-like liquid used in construction).

“It was horrible stuff. It was like diarrhoea, that’s the only way of explaining it,” says Campbell. “There was a boy – Toastie – I can’t remember his real name. He fell into it. They had quite a job getting him out, they thought he was drowned, but he was alright.”

Many others were not alright. The danger of the work and conditions both inside and on top of the mountain meant there was a significant human cost for the project. During construction, 15 people tragically lost their lives.

Today a carved wooden mural hangs on the wall of the machine hall to capture and commemorate the myth of the mountain and the men who sadly died – a constant reminder of the bravery and sacrifice they made.

The men that made the mountain

The Cruachan ‘Tunnel Tigers’

The Tunnel Tigers were united in their efforts, but came from a range of backgrounds and cultures. Polish and Irish labourers worked alongside Scots, as well as displaced Europeans, prisoners of the second world war and even workers from as far as Asia. The men would work 12, sometimes 18-hour shifts, seven days a week. Campbell adds that some men opted to continue earning rather than rest by doing a ‘ghoster’, which saw them working a solid 36 hours.

Many men would make treble the salary of their previous jobs, with some receiving as much as £100 a week, at a time when the average pay in Scotland was £12. Some teams’ payslips were stamped with the words ‘danger money’ – illustrative of the men’s motivation to endure such life-threatening work.

While it was a dangerous and demanding job, many of the Tigers look back with fond memories of their time on the site and many stayed in the area for years after. “It was an experience I’m glad I had,” says Scott. “It puts you in good stead for the rest of your days.”

As for Cruachan Power Station, its four turbines are still relied on today by Great Britain to balance everyday energy supply. As the electricity system continues to change, the pumped hydro station’s dual ability to deliver 440 megawatts (MW) of electricity in just 30 seconds, or absorb excess power from the grid by pumping water from Loch Awe to its upper reservoir, is even more important than when it opened.

Standing at the foot of a mountain more than 50 years ago, the men about to build a power station inside a lump of granite may have found it unlikely their work would endure into the next millennium. They may have found it unlikely it was possible to build it at all. But they did and today it remains an engineering marvel, a testament to the effort and expertise of all those who made it.

Visit Cruachan – The Hollow Mountain

From coal to pumped hydro storage in 83 mountainous miles

Moving of transformers from Longanett to Cruachan

Nestled in in the Western Highlands in Scotland, Cruachan Power Station is surrounded by a breathtaking landscape of plunging mountainsides and curving lochs, between which weave narrow roads.

It makes for scenic driving. What might be trickier, however, is transporting 230 tonnes of electrical equipment up and down said mountains, navigating narrow bends.

But that’s exactly what a team from Drax was tasked with when it came to moving two 115 tonne transformers, the equipment used to boost electricity’s voltage. They were in storage 83 miles away at Longannet, currently being demolished, near Fife.

“You’re moving a piece of equipment that is designed to stay in one place. It’s not designed to go on the roads,” explains Jamie Beardsall, an Electrical Engineer from the EC&I Engineering team who worked on the project. “You’re very aware of your environment and the risks. Everything is checked and doubled checked.”

Transformers being driven to Drax’s Cruachan pumped storage hydro power station

The complicated task required colleagues from both Cruachan and Drax power stations to collaborate from the very beginning. Gary Brown, Mark Rowbottom and Jamie from the EC&I Engineering team based in Yorkshire teamed up with Gordon Pirie and Roddy Davies from Scotland who met frequently and planned the project alongside specialist transport contractor, ALE, which advised on heavy lifting and movement.

Planning and execution of the works also required constant liaison and coordination with the police and highway authorities in both Scotland and England. But more than that, the transformers’ one-by-one journey from the demolition site of what was once Europe’s biggest coal-fired power station, to a hydro-powered energy storage site on the other side of Scotland, represents the continual shift of Great Britain’s electricity away from fossil fuels.

Stepping up voltage

Transformers are an essential part of the electricity system. By increasing or decreasing the voltage of an electrical current they can enable it to traverse the national grid or make electricity safe to enter our homes.

“When we generate electricity, it is at a lower voltage than we need to send it out to the national grid,” says Beardsall. “We use transformers to increase the voltage so it can go out to the national grid and be transmitted over long distances more efficiently. We then reduce the voltage again so it can be brought safely into our homes.”

While all transformers apply the same principles for stepping voltage up and down, the two transformers that were transported through the Highlands to Cruachan were designed specifically for the pumped storage hydro power station, but stored at Longannet where there was more space. At the time, both stations where owned by Scottish Power. Cruachan was purchased by Drax on the last day of 2018.

Engineers at Cruachan Power Station in front of one of the original transformers

When transported, each transformer weighs 115 tonnes and is almost four metres high. Transporting them isn’t as simple as loading them into the back of a van.

“You can’t transport them in a fully built state, they would be too heavy and wouldn’t go under bridges,” says Beardsall. “We had to strip them back to the core and now we’re working to reassemble them on site.”

Cutting down to the core

Each transformer consists of two main components; a core made of iron, and two windings made of copper. The transformer itself has no moving parts. When a voltage is applied to one of the transformer windings (the primary winding), a magnetic field is created in the iron core. This field then induces a voltage into the other winding (the secondary winding). Depending on the number of coils on each set of windings, the output voltage will increase or decrease. More coils on the secondary winding steps the voltage up, fewer coils on the secondary steps the voltage down.

This entire apparatus is submerged in an oil to provide insulation and keep the transformer cool, meaning the first step was to drain 50,000 litres of oil from each transformer. This was then sent to a refinery to be processed, cleaned and stored until the transformers are reassembled at Cruachan.

Oil removed, the Drax engineers oversaw and managed the dismantling of the transformers at Longannet. Once the transformers were stripped down to a state suitable for movement, they were loaded up one-by-one for transportation.

Meanwhile, at Cruachan, engineers worked on construction of a purpose built bunded area for storage of the transformers. The transformers were destined to be stored on land outside the main admin buildings, adjacent to Loch Awe.

Loch Awe at Cruachan Power Station

The Loch itself is a beautiful place with abundant animal and birdlife – and a fish farm is located almost directly opposite the power station. In the event of a transformer leaking, the natural environment must be protected. An oil-tight storage area was therefore built, to ensure that no oil would end up in the Loch.

The road to Cruachan

Rather than heaving each of the transformers onto a trailer, each one was raised using hydraulic jacking equipment. A trailer was then driven underneath, and the transformer lowered onto it.

“The trailer is specifically designed to take the transformers and fit certain dimensions,” explains Beardsall. “It has 96 wheels over 12 sets of axles, each of which can be turned individually to assist in navigating around tight spots.”

The trailers are towed by large tractor units, each weighing over 40 tonnes. These provided the motive power to move the transformers. Each was moved in two stages over the space of two weeks. The first transformer over the course of a weekend, the second in the middle of the night some 10 days later.

“When we could go was governed by the police and highways agencies as they need to close the roads,” says Beardsall. “We set off from Longannet at 7pm on the Friday evening and moved them 60 miles along the route to a layby where we stored them. That leg took approximately five hours. Then the second leg was the last 25 miles to Cruachan, carried out on the Sunday morning of the same weekend.”

Navigating the Highlands with 115 tonnes of hugely valuable equipment is where the real challenge came in. Hills, dips and tight turns made for slow progress.

Generator transformer at Cruachan Power Station

The original generator transformer at Cruachan Power Station

“The average speed was about 10mph, but we’re going through the Highlands so it was quite a bit slower than that in some places. We occasionally hit 20+ mph at points, but that was definitely for the minority of the time!” says Beardsall. “Some of the roads were so narrow it was difficult to get two cars past each other. The contractors also had to put metal plating over bridges because they weren’t strong enough to take the load.”

Having safely arrived at Cruachan, the transformers are being stored at surface level until they are needed, at which time they will be taken down the half-a-mile-long tunnel into the energy storage station.

“Typically a transformer has a design life of 25 years, although they can last longer” explains Beardsall. “There are four units at Cruachan and the transformers for two of these units have already been replaced, so these transformers would be used to replace the existing transformer for the two remaining units should it ever be needed. The existing transformer having been in operation since 1965.”

Moving heavy objects is part and parcel of running Drax’s multiple power stations around the country. However, navigating the Highlands, the very terrain which makes Cruachan possible, added a unique challenge for Drax’s engineers.

Visit Cruachan Power Station – The Hollow Mountain

Read the press release

A brief history of Scottish hydropower

Over the last century, Scottish hydro power has played a major part in the country’s energy make up. While today it might trail behind wind, solar and biomass as a source of renewable electricity in Great Britain, it played a vital role in connecting vast swathes of rural Scotland to the power grid – some of which had no electricity as late as the 1960s. And all by making use of two plentiful Scottish resources: water and mountains.

But the road to hydro adoption has been varied and difficult, travelled on by brave death-defying construction workers, ingenious engineers and the inspirational leadership of a Scottish politician.

To trace where the history of Scottish hydropower began, we need to go back to the end of the 19th Century and to the banks of Loch Ness.

Loch Ness, Scottish Highlands

Loch Ness, Scottish Highlands

From abbeys to aluminium 

It was on the shores of Loch Ness that one of the first known hydro-electric schemes was built at the Fort Augustus Benedictine abbey. The scheme provided power to the monks living there as well as 800 village residents – though legend has it that their lights went dim every time the monks played their organ.

However, it was the British Aluminium Company, formed in 1894, that first realised the huge potential of Scotland’s steep mountains, lochs and reliably heavy rainfall to generate substantial amounts of hydro power. In need of a reliable source of electricity to help turn raw bauxite into aluminium, the firm established a hydro-electric plant and smelting works at Foyers and Loch Ness. Several similar schemes to support the aluminium industry soon appeared around the country.

But it took another 20 years for the first major hydro-power project to supply electricity to the public to emerge.

In 1926, the Clyde Valley Electrical Power Co. opened the Lanark Hydro Electric Scheme, which used energy from the River Clyde’s flow to create power. Now owned by Drax, it still has a generation capacity of 17 MW – enough to supply more than 15,000 homes.

River Clyde, Lanark

It was quickly followed by power stations at Rannoch and Tummel in the Grampian mountains and, in 1935, by what became a highly influential scheme in the history of Scottish hydro power at Galloway.

Drawing enough energy from local rivers to support five generating power stations, the project was the largest run-of-the-river scheme ever created. Architecturally, it also set the tone for later projects with stylised dams and modernist turbine halls.

A fairer share of power for the Highlands

The Galloway scheme supplied energy to a wide area, too, including parts of the central Highlands. Scottish Labour MP Tom Johnston, a staunch socialist and Scottish patriot saw how this new power source could provide massive benefits to northern communities. In the early 1940s, only an estimated one in six Scottish farms and one in a hundred small land crofts had electricity.

In 1941, Johnston became Scotland’s Minister for State with a vision, as he put it, to create “large-scale reforms that might mean Scotia Resurgent”. Expanding hydro power was a priority.

Tom Johnston MP

Two years later, he formed the North of Scotland Hydro-Electric Board (NSHEB). Its aim was to create several new schemes, including at Tummel and Loch Sloy, that would supply the national grid and bring electricity to more rural Scottish areas.

The projects were met with fierce opposition from landowners and local pressure groups who feared new dams and power stations would ruin the countryside and bring unwelcome industrialisation.

Public enquiries followed, but the board’s promises that the developments would be sensitive to the environment and bring cheap electricity in areas such as the Isle of Skye and Loch Ewe eventually won the day.

Thousands of local men, as well as German and Italian former prisoners of war, were drafted in to work on the projects.

Among the most courageous were workers known as ’Tunnel Tigers’ who blasted away rock using handheld drills and gelignite to create water channels and underground chambers, including at Drax’s Cruachan pumped storage hydro station.

Deaths caused by everything from blast injuries to fires were common. The men also had to cope with incessant rain and cold, and were housed in bleak military-style camps. With little to do in their spare time, besides drink, fights would break out regularly.

But the financial rewards were enormous, with wages up to ten times higher than labourers employed on Highland estates could expect.

Glenlee penstocks

The future takes shape

The board’s first small projects were completed in 1948 at Morar and Nostie Bridge, supplying electricity to areas including parts of Wester Ross. Catherine Mackenzie, a local widow, performed the Morar opening ceremony, reportedly declaring: “Let light and power come to the crofts.”

Bigger schemes were plagued by problems. Conveyor belts had to be built to transport stone across 1.75 miles of moor during construction at Sloy, for instance, and there were frequent stone and timber shortages.

But Sloy eventually opened in 1950, the largest conventional hydro electrical power station in Great Britain with an installed capacity of 128 MW. It would be followed by major schemes at Glen Affric and Loch Shin.

By the mid Sixties, the Board had built 54 main power stations and 78 dams. Northern Scotland was now 90% connected to the national grid. Hydro Board shops began popping up on high streets, selling appliances and collecting bill payments.

Tom Johnston died in 1965, aged 83. The Provost of Inverness declared: “No words can say how grateful we are.”

Cruachan Power Station

Loch Awe beside Cruachan Power Station

That same year, the world’s then largest reversible pumped storage power station opened at Cruachan. During times of low electricity demand, its turbines pump water from Loch Awe to the reservoir above. When demand rises, the turbines reverse, and water flows down to generate power. A similar scheme opened at Foyes in 1974.

Glendoe, near Loch Ness, was the most-recent major hydro scheme to be built. Opening in 2009, it has a generation capacity of 100 MW.

There are plans for a pumped storage scheme at Coire Glas, with a storage capacity of 30 GWh– more than doubling Great Britain’s current total pumped storage capacity. Drax’s Cruachan Power Station could also be expanded.

In recent years, however, the real growth has been in smaller hydro-electric schemes that may power just one or a handful of properties – with more than 100 MW of such generation capacity installed in the Highlands since 2006.

Boosting the environment and economy

Scotland now provides 85% of Great Britain’s hydro-electric resource, with a total generation capacity of 1,500 MW. Improved power supplies have attracted more industry to the Highlands, without seriously altering its character. And access roads created during hydro-power schemes’ construction have opened up remote areas to tourism.

For many, the dams built by NSHEB are among the greatest construction achievements in post-war Europe and remain an essential part of Great Britain’s attempts to move towards a low-carbon energy future.

What is LNG and how is it cutting global shipping emissions?

Oil tanker, Gas tanker operation at oil and gas terminal.

Shipping is widely considered the most efficient form of cargo transport. As a result, it’s the transportation of choice for around 90% of world trade. But even as the most efficient, it still accounts for roughly 3% of global carbon dioxide (CO2) emissions.

This may not sound like much, but it amounts to 1 billion tonnes of COand other greenhouse gases per year – more than the UK’s total emissions output. In fact, if shipping were a country, it would be the sixth largest producer of greenhouse gas (GHG) emissions. And unless there are drastic changes, emissions related to shipping could increase from between 50% and 250% by 2050.

As well as emitting GHGs that directly contribute towards the climate emergency, big ships powered by fossil fuels such as bunker fuel (also known as heavy fuel oil) release other emissions. These include two that can have indirect impacts – sulphur dioxide (SO2) and nitrogen oxides (NOx). Both impact air quality and can have human health and environmental impacts.

As a result, the International Maritime Organization (IMO) is introducing measures that will actively look to force shipping companies to reduce their emissions. In January 2020 it will bring in new rules that dictate all vessels will need to use fuels with a sulphur content of below 0.5%.

One approach ship owners are taking to meet these targets is to fit ‘scrubbers’– devices which wash exhausts with seawater, turning the sulphur oxides emitted from burning fossil fuel oils into harmless calcium sulphate. But these will only tackle the sulphur problem, and still mean that ships emit CO2.

Another approach is switching to cleaner energy alternatives such as biofuels, batteries or even sails, but the most promising of these based on existing technology is liquefied natural gas, or LNG.

What is LNG?

In its liquid form, natural gas can be used as a fuel to power ships, replacing heavy fuel oil, which is more typically used, emissions-heavy and cheaper. But first it needs to be turned into a liquid.

To do this, raw natural gas is purified to separate out all impurities and liquids. This leaves a mixture of mostly methane and some ethane, which is passed through giant refrigerators that cool it to -162oC, in turn shrinking its volume by 600 times.

The end product is a colourless, transparent, non-toxic liquid that’s much easier to store and transport, and can be used to power specially constructed LNG-ready ships, or by ships retrofitted to run on LNG. As well as being versatile, it has the potential to reduce sulphur oxides and nitrogen oxides by 90 to 95%, while emitting 10 to 20% less COthan heavier fuel alternatives.

The cost of operating a vessel on LNG is around half that of ultra-low sulphur marine diesel (an alternative fuel option for ships aiming to lower their sulphur output), and it’s also future-proofed in a way that other low-sulphur options are not. As emissions standards become stricter in the coming years, vessels using natural gas would still fall below any threshold.

The industry is starting to take notice. Last year 78 vessels were fitted to run on LNG, the highest annual number to date.

One company that has already embraced the switch to LNG is Estonia’s Graanul Invest. Europe’s largest wood pellet producer and a supplier to Drax Power Station, Graanul is preparing to introduce custom-built vessels that run on LNG by 2020.

The new ships will have the capacity to transport around 9,000 tonnes of compressed wood pellets and Graanul estimates that switching to LNG has the potential to lower its COemissions by 25%, to cut NOx emissions by 85%, and to almost completely eliminate SOand particulate matter pollution.  

Is LNG shipping’s only viable option?

LNG might be leading the charge towards cleaner shipping, but it’s not the only solution on the table. Another potential is using advanced sail technology to harness wind, which helps power large cargo ships. More than just an innovative way to upscale a centuries-old method of navigating the seas, it is one that could potentially be retrofitted to cargo ships and significantly reduce emissions.

Drax is currently taking part in a study with the Smart Green Shipping Alliance, Danish dry bulk cargo transporter Ultrabulk and Humphreys Yacht Design, to assess the possibility of retrofitting innovative sail technology onto one of its ships for importing biomass.

Manufacturers are also looking at battery power as a route to lowering emissions. Last year, boats using battery-fitted technology similar to that used by plug-in cars were developed for use in Norway, Belgium and the Netherlands, while Dutch company Port-Liner are currently building two giant all-electric barges – dubbed ‘Tesla ships’ – that will be powered by battery packs and can carry up to 280 containers.

Then there are projects exploring the use of ammonia (which can be produced from air and water using renewable electricity), and hydrogen fuel cell technology. In short, there are many options on the table, but few that can be implemented quickly, and at scale – two things which are needed by the industry. Judged by these criteria, LNG remains the frontrunner.

There are currently just 125 ships worldwide using LNG, but these numbers are expected to increase by between 400 and 600 by 2020. Given that the world fleet boasts more than 60,000 commercial ships, this remains a drop in the ocean, but with the right support it could be the start of a large scale move towards cleaner waterways.

What is a fuel cell and how will they help power the future?

How do you get a drink in space? That was one of the challenges for NASA in the 1960s and 70s when its Gemini and Apollo programmes were first preparing to take humans into space.

The answer, it turned out, surprisingly lay in the electricity source of the capsules’ control modules. Primitive by today’s standard, these panels were powered by what are known as fuel cells, which combined hydrogen and oxygen to generate electricity. The by-product of this reaction is heat but also water – pure enough for astronauts to drink.

Fuel cells offered NASA a much better option than the clunky batteries and inefficient solar arrays of the 1960s, and today they still remain on the forefront of energy technology, presenting the opportunity to clean up roads, power buildings and even help to reduce and carbon dioxide (CO2) emissions from power stations.

Power through reaction

At its most basic, a fuel cell is a device that uses a fuel source to generate electricity through a series of chemical reactions.

All fuel cells consist of three segments, two catalytic electrodes – a negatively charged anode on one side and a positively charged cathode on the other, and an electrolyte separating them. In a simple fuel cell, hydrogen, the most abundant element in the universe, is pumped to one electrode and oxygen to the other. Two different reactions then occur at the interfaces between the segments which generates electricity and water.

What allows this reaction to generate electricity is the electrolyte, which selectively transports charged particles from one electrode to the other. These charged molecules link the two reactions at the cathode and anode together and allow the overall reaction to occur. When the chemicals fed into the cell react at the electrodes, it creates an electrical current that can be harnessed as a power source.

Many different kinds of chemicals can be used in a fuel cell, such as natural gas or propane instead of hydrogen. A fuel cell is usually named based on the electrolyte used. Different electrolytes selectively transport different molecules across. The catalysts at either side are specialised to ensure that the correct reactions can occur at a fast enough rate.

For the Apollo missions, for example, NASA used alkaline fuel cells with potassium hydroxide electrolytes, but other types such as phosphoric acids, molten carbonates, or even solid ceramic electrolytes also exist.

The by-products to come out of a fuel cell all depend on what goes into it, however, their ability to generate electricity while creating few emissions, means they could have a key role to play in decarbonisation.

Fuel cells as a battery alternative

Fuel cells, like batteries, can store potential energy (in the form of chemicals), and then quickly produce an electrical current when needed. Their key difference, however, is that while batteries will eventually run out of power and need to be recharged, fuel cells will continue to function and produce electricity so long as there is fuel being fed in.

One of the most promising uses for fuel cells as an alternative to batteries is in electric vehicles.

Rachel Grima, a Research and Innovation Engineer at Drax, explains:

“Because it’s so light, hydrogen has a lot of potential when it comes to larger vehicles, like trucks and boats. Whereas battery-powered trucks are more difficult to design because they’re so heavy.”

These vehicles can pull in oxygen from the surrounding air to react with the stored hydrogen, producing only heat and water vapour as waste products. Which – coupled with an expanding network of hydrogen fuelling stations around the UK, Europe and US – makes them a transport fuel with a potentially big future.

 

Fuel cells, in conjunction with electrolysers, can also operate as large-scale storage option. Electrolysers operate in reverse to fuel cells, using excess electricity from the grid to produce hydrogen from water and storing it until it’s needed. When there is demand for electricity, the hydrogen is released and electricity generation begins in the fuel cell.

A project on the islands of Orkney is using the excess electricity generated by local, community-owned wind turbines to power a electrolyser and store hydrogen, that can be transported to fuel cells around the archipelago.

Fuel cells’ ability to take chemicals and generate electricity is also leading to experiments at Drax for one of the most important areas in energy today: carbon capture.

Turning COto power

Drax is already piloting bioenergy carbon capture and storage technologies, but fuel cells offer the unique ability to capture and use carbon while also adding another form of electricity generation to Drax Power Station.

“We’re looking at using a molten carbonate fuel cell that operates on natural gas, oxygen and CO2,” says Grima. “It’s basic chemistry that we can exploit to do carbon capture.”

The molten carbonate, a 600 degrees Celsius liquid made up of either lithium potassium or lithiumsodium carbonate sits in a ceramic matrix and functions as the electrolyte in the fuel cell. Natural gas and steam enter on one side and pass through a reformer that converts them into hydrogen and CO2.

On the other side, flue gas – the emissions (including biogenic CO2) which normally enter the atmosphere from Drax’s biomass units – is captured and fed into the cell alongside air from the atmosphere. The CO2and oxygen (O2) pass over the electrode where they form carbonate (CO32-) which is transported across the electrolyte to then react with the hydrogen (H2), creating an electrical charge.

“It’s like combining an open cycle gas turbine (OCGT) with carbon capture,” says Grima. “It has the electrical efficiency of an OCGT. But the difference is it captures COfrom our biomass units as well as its own CO2.”

Along with capturing and using CO2, the fuel cell also reduces nitrogen oxides (NOx) emissions from the flue gas, some of which are destroyed when the O2and CO2 react at the electrode.

From the side of the cell where flue gas enters a CO2-depleted gas is released. On the other side of the cell the by-products are water and CO2.

During a government-supported front end engineering and design (FEED) study starting this spring, this COwill also be captured, then fed through a pipeline running from Drax Power Station into the greenhouse of a nearby salad grower. Here it will act to accelerate the growth of tomatoes.

The partnership between Drax, FuelCell Energy, P3P Partners and the Department of Business, Energy and Industrial Strategy could provide an additional opportunity for the UK’s biggest renewable power generator to deploy bioenergy carbon capture usage and storage (BECCUS) at scale in the mid 2020s.

From powering space ships in the 70s to offering greenhouse-gas free transport, fuel cells continue to advance. As low-carbon electricity sources become more important they’re set to play a bigger role yet.

Learn more about carbon capture, usage and storage in our series:

What makes a mountain right for energy storage

Cruachan pylons

Electricity generation is often tied to a country’s geography, climate and geology. As an island Great Britain’s long coastline makes off-shore wind a key part of its renewable electricity, while Iceland can rely on its geothermal activity as a source of power and heat.

One of the most geographically-influenced sources of electricity is hydropower. A site needs a great enough volume of water flowing through it and the right kind of terrain to construct a dam to harness it. Even more dependent on the landscape is pumped hydro storage.

Pumped storage works by pumping water from one source up a mountain to a higher reservoir and storing it. When the water is released it rushes down the same shafts it was pumped up, spinning a turbine to generate electricity. The advantage of this is being able to store the potential energy of the water and rapidly deliver electricity to plug any gaps in generation, for example when the wind suddenly dropsor when Great Britain instantly requires a lot more power.

This specific type of electricity generation can only function in a specific type of landscape and the Scottish Highlands offers a location that ticks all the boxes.

The perfect spot for pumped storage

Cruachan Power Station, a pumped hydro facility capable of providing 440 megawatts (MW) of electricity, sits on the banks of Loch Awe in the Highlands, ready to deliver power in just 30 seconds.

“Here there is a minimum distance between the two water sources with a maximum drop,” says Gordon Pirie, Civil Engineer at Cruachan Power Station, “It is an ideal site for pumped storage.”

The challenge in constructing pumped storage is finding a location where two bodies of water are in close proximity but at severely different altitudes.

From the Lochside, the landscape rises at a dramatic angle, to reach 1,126 metres (3,694 feet) above sea level at the summit of Ben Cruachan, the highest peak in the Argyll. The crest of Cruachan Dam sits 400.8 metres (1,315 feet) up the slopes, creating a reservoir in a rocky corrie between ridges. The four  100+ MW turbines, which also act as pumps, lie a kilometre inside the mountain’s rock.

“The horizontal distance and the vertical distance between water sources is what’s called the pipe-to-length ratio,” explains Pirie. “It’s what determines whether or not the site is economically viable for pumped storage.”

The higher water is stored, the more potential energy it holds that can be converted into electricity. However, if the distance between the water sources is too great the amount of electricity consumed pumping water up the mountain becomes too great and too expensive.

The distance between the reservoir and the turbines is also reduced by Cruachan Power Station’s defining feature: the turbine hall cavern one kilometre inside the mountain…

Carving a power station out of rock

The access tunnel, cavern and the networks of passageways and chambers that make up the power station were all blasted and drilled by a workforce of 1,300 men in the late 1950s to early 1960s, affectionately known as the Tunnel Tigers.

This was dangerous work, however the rock type of the mountainside was another geographic advantage of the region. “It’s the diorite and phyllite rock, essentially granite, so it’s a hard rock, but it’s actually a softer type of granite, and that’s also why Cruachan was chosen as the location,” says Pirie.

The right landscape and geology was essential for establishing a pumped storage station at Cruachan, however, the West Highlands also offer another essential factor for hydropower: an abundance of water.

Turning water to power

The West Highlands are one of the wettest parts of Europe, with some areas seeing average annual rain fall of 3,500 millimetres (compared to 500 millimetres in some of the driest parts of the UK). This abundance of water from rainfall, as well as lochs and rivers also contributes to making Cruachan so well-suited to pumped storage.

The Cruachan reservoir can contain more than 10 million cubic metres of water. Most of this is pumped up from Loch Awe, which at 38.5 square kilometres is the third largest fresh-water loch in Scotland. Loch Awe is so big that if Cruachan reservoir was fully released into the loch it would only increase the water level by 20 centimetres.

However, the reservoir also makes use of the aqueduct system made up of 19 kilometres of tunnels and pipes that covers 23 square kilometres of the surrounding landscape, diverting rainwater and streams into the reservoir. Calculating quite how much of the reservoir’s water comes from the surrounding area is difficult but estimates put it at around a quarter.

“There are 75 concrete intakes dotted around the hills to gather water and carry it through the aqueducts to the reservoir,” says Pirie. “The smallest intake is about the size of a street drain in the corner of a field and the largest one is about the size of a three-bedroom house.”

Pumped storage stations offer the electricity system a source of extra power quickly but it takes the right combination of geographical features to make it work. Ben Cruachan just so happens to be one of the spots where the landscape makes it possible.