Tag: sustainability

Giving up coal

Tony Juniper at Drax Power Station between coal stock and biomass wood pellet storage domes

Tony Juniper* is an environmental campaigner, author and director at Robertsbridge, a consultancy helping advise Drax on its sustainability programmes

Back in 2006 while working as Director at Friends of the Earth I approved a new report to be published in support of our then campaign for a new Climate Change Act. We wanted to show UK government ministers how it would indeed be possible to make cuts in emissions so that by 2050 the UK could progressively have reduced greenhouse gas pollution by 80 per cent compared with emissions in 1990. It was a radical and demanding agenda that we’d adopted and it was important to show the practical steps that could be made in achieving it.

The analysis we presented was based on an electricity sector model that we had developed. Different data and assumptions could be inputted and using this we set out six possible lower carbon futures.

In our best case scenario we foresaw how it would be feasible to slash emissions by about 70 per cent by 2030.

This was based on an ambitious energy efficiency programme and a shift away from fossil energy and toward renewables, including wind and solar power. In that renewables mix was also an important role for biomass to replace coal in the country’s largest power station – Drax.

This was not only crucial for backing up intermittent renewable sources but also a key piece in a future electricity sector that we believed should avoid the construction of new nuclear power stations. In November 2008 our campaign succeeded and the UK was the first country in the world to adopt a new national law for the science-based reduction of greenhouse gas emissions. Since then I’ve been working as an independent sustainability advisor, including with the advisory group Robertsbridge, of which I was a co-founder.

My work has included assisting various companies in meeting the targets set out in that new law. For example, I was the Chair of the industry campaign Action for Renewables which sought government and public support for the large-scale expansion of wind, tidal and wave power.

Different campaigners tried to stop the expansion of these renewable sources of electricity, however, and succeeded in derailing support for on-shore wind power developments.

Although in its infancy, concerns were also raised about proposals for different kinds of tidal power.

In the years after the Climate Change Act I was encouraged to see that Drax began to switch over to wood pellets to generate power but concerned to see that this too had come under attack. The broadly agreed view that sustainable biomass could have a role in the phase out of coal had gone, and in its place were claims  that it was actually worse than burning coal. It was against this backdrop of changed perspectives that myself and Robertsbridge colleagues were pleased to be invited to help Drax in devising a new sustainability plan.

Early on in our conversations with Drax it became clear that part of the challenge with biomass — deciding the extent to which it is a rational choice to help with the process of decarbonisation, is how the answer to that touches so many different issues.

For example, when it comes to the exit from coal, cleaner alternatives must be brought forward to replace it, including wind and solar power.

But although these sources of renewable energy are growing rapidly, they still come with their own challenges, especially because wind can’t generate on still days and solar ceases at night. This intermittency raises issues about what the best electricity storage or complementary clean power sources might be to back them up when needed.

There are important questions about the best sources of biomass and the extent to which long-distance transport of that fuel is desirable. On top of that are issues linked with the management of the forests from which the raw material is sourced, and whether the extraction of wood to generate power can be compatible with carbon neutrality. There is the matter of nature conservation and the extent to which wood fuel demand will affect the status of species and habitats of conservation concern. For example, to what extent might the wood pellet industry be driving the conversion of semi-natural woodlands to plantations?

All of this is bound up with the economic and social conditions prevailing in the landscapes from which the wood is derived and the extent to which those buying wood fuel can pursue positive outcomes for the environment, even when carbon and wildlife are at best of marginal concern to the local forest owners growing the wood.

Then there is the extent to which economic incentives might be linked with the carbon stocks held in the forest. For example, strong demand for wood is held to be the main reason why since the 1950s the volume of carbon stored in standing timber in the forests of the US South has increased by over 100%.

Demand for wood might seem counter-intuitive as a positive factor in maintaining tree cover, but in the US South it has been a big part of the picture.

On top of all this is the question of what would happen if there were no demand for wood fuel. In landscapes that have seen volatility in demand arising from the decline in newsprint in favour of digital devices and the slowdown in US house building following the 2008 financial crisis, this is not easy to answer.

Although seeking answers is a complex task, our advice to Drax was that it should work with its many stakeholders in finding the best possible fit between its business planning and these and other questions.

One way of doing that would be to set out the different issues in an accessible manner and hence the production of the film that can be seen here.

It’s called ‘The biomass sustainability story And while most of us can agree with the basic idea that we have to stop burning coal, it seems the big questions are about what might be the best ways to do it? Might biomass have a role? I believe it does.

Have a look at the film and see what you think, especially if you feel as though you’ve already made up your mind.

Back to nature

Take a walk up the banks of Barlow Mound this weekend and you could encounter sheep, roe deer, rabbits, falcons, bats and impressive views of North Yorkshire as well as a host of other fauna and flora. What you might not realise is the hill you’re standing on is entirely man-made and is largely made of ash.

That this might be a surprise to visitors is testament to the success of Barlow Mound, a project which was conceived in the 1970s as a disposal solution for the left-over power station product of ash, that has gone on to provide a thriving natural habitat to be enjoyed by wildlife and local residents alike.

Whilst Barlow Mound has a fascinating recent history, it is by no means a thing of the past. Today it’s a unique environment that is continually managed by a passionate team and offers plenty for visitors to see.

The mound under construction

A mound out of a molehill

When Drax Power Station was first opened in 1974 it was the largest coal power station in Western Europe burning around 250,000 tonnes of coal a week. Burning that much coal resulted in a lot of pulverised fuel ash left over as a by-product. Today much of the ash by-product from burning biomass and coal at Drax is sold to the building industry, but before the market for this product emerged, building a mound was the thing to do.

“The Aberfan disaster happened at around the same time as construction began at Drax, so there was a lot of persuading people that it was the right thing to do,” FGD and By-Products Section Head Andrew Christian says. “So it’s an engineered mound to make sure it won’t ever move. There was a lot of engineering that went into it, and the Central Electricity Generating Board (which then ran Drax) were brilliant at engineering.”

As part of the planning permission for building the mound, Drax proposed to turn the mound into a natural habitat supporting trees and a variety of wildlife. Today the mound is continually managed by a passionate Drax team as well as contracted ecologists and tenant farmers to ensure the nature reserve is an environment that supports all those who call it home.

“All of a sudden I’ve got a farmer explaining sheep digestion systems to me and that’s obviously not my area of expertise!” Christian says. “For the ecologists it’s a bit of a dream because not that many people go on there, so there’s not many landmasses like that that have got wildflower meadows, grassland, trees, wet areas, where there aren’t human inhabitants, so things are left to naturally evolve.”

The team of ecologists provide regular advice to Drax, and that advice leads to installations such as the reptile hibernacula which provides a suitable home for grass snakes – “dig a hole, fill it full of rocks and logs, put the grass on top, they love it,” Christian says. Another reason the ecological advice is important is due to the self-contained nature of the habitat – a fence around the entire site means species numbers must be closely monitored.

What you can see at the nature reserve

There are four marked walks for visitors to enjoy that wind through the changing landscapes of the nature reserve, from Fenton’s Pond and its wildlife to the mound-top viewing platform offering panoramic views of Yorkshire, Lincolnshire and Humberside. Drax have recently improved facilities for walkers by installing new signage, a bird hide, and better identification of the walks. The nature reserve is also home to the Yorkshire Wildlife and Swan Rescue Centre which rehabilitates up to 2,000 birds a year.

Another new addition is the new outdoor classroom next to the Skylark Centre. The classroom is now regularly used by Outdoor Ted, an outdoor learning programme for primary schools in Yorkshire designed and delivered by education specialist Stacey Howard. Children can enjoy the nature reserve and can take part in activities such as archery, shelter building and making campfires.

Photo: Steve Parker

Photo: Steve Parker

And in December 2017 the Skylark Centre is hosting two special Christmas Wonderland events for the public. This year’s events will see the Centre transformed into an elves workshop featuring Christmas traditions from around the world, face painting, Christmas quizzes, arts & crafts and marshmellow roasting around the outdoor fire pit. You can see more information on the Christmas Wonderland events here – everyone is welcome and entry is free with charitable donations welcomed.

A view to the future

It’s part of the original planning condition of Barlow Mound to maintain the habitat and natural resource. But the maintenance of the nature reserve is also about social responsibility. As Christian says, “If you live in Barlow village, when you come in and walk around it, it’s a fantastic place and it’s free.”

How sustainable biomass crosses the Atlantic to power the nation

In the UK, we’re so accustomed to using electricity we rarely think of the journey it takes from power station to plug.

In fact, electricity must travel across a network of cables, wires and substations before it makes it from the power stations generating it to the homes and businesses using it. At Drax Power Station, which supplies 16% of Great Britain’s renewable power, there’s another journey that takes place even before the electricity leaves the power station.

This journey – the journey of more than half of the compressed wood pellet fuel Drax uses to generate electricity – has its origins in the expanse of forestland in the southern USA.

From forest to fuel

The journey starts in the huge, working forests of the southern states of the USA where low value wood – such as the thinnings cleared as part of a forests’ growing cycle – is collected in a responsible and sustainable way to make high density wood pellets, which Drax Power Station uses to produce more than 60% of its electricity.

Drax Group’s own pellet manufacturer, Drax Biomass, produces around 15% of the power station’s renewable fuel. After pelletisation locally at its Amite and Morehouse facilities, located in Louisiana and Mississippi respectively, the biomass is transported to Drax Transit at the Port of Greater Baton Rouge, on the Mississippi River. From Morehouse, trains made up of closed-top grain cars, each capable of carrying 120 tonnes, transport the pellets 221 miles to Baton Rouge. At Amite, just 60 miles from Baton Rouge, fuel-efficient trucks carry 25-tonne loads between plant and port.

Once at the port, the truck and train cargoes are unloaded into one of two biomass storage domes – each holding 40,000 tonnes of biomass – before being loaded into the ships for their transatlantic journey.

A boat arrives at Peel Ports in Liverpool

From port to port

Drax uses a range of ships to carry the pellets on their 8,000-mile journey to the UK, ranging from big ‘Coastal’ ships, capable of hauling 20,000 tonnes, to truly massive Panamax ships, more than a quarter of a kilometre in length and capable of carrying up to 80,000 tonnes.

The ships leave the port and spend 24 hours travelling the 200 miles down the Mississippi River into the Gulf of Mexico, around Florida, and into the Atlantic. From here, it’s a 19-day voyage to reach ports in the UK. To put that into perspective, it took Columbus more than two months to make his first trip across the Atlantic.

The ships pull into ports in Tyne, Hull, Immingham and Liverpool, where they are unloaded. At the bespoke biomass port facility at Peel Ports in Liverpool an Archimedean screw removes the pellets from the ship’s holds and transports them onto a conveyer belt, which loads them onto trains. These four ports can process up to 12 million tonnes of biomass every year, combined.

From port to power station

Like the stateside journey, Drax uses trains to carry its cargo from port to power plant. The difference on the UK side, however, is that the UK trains were designed specifically to carry biomass wood pellets. Clever design and engineering was used to maximise the space inside each carriage and ensure the trains carry large loads despite UK rail restrictions.

These trains carry the pellets across the country (and even over the Pennines for trains coming from Liverpool) to Drax Power Station in Selby, North Yorkshire. Roughly 14 trains arrive at the plant every day and collectively unload about 20,000 tonnes of pellets every day, from Monday to Saturday. A system of conveyor belts carry these pellets to one of Drax’s four giant biomass storage domes, each capable of housing about 80,000 tonnes of pellets.

Then, when needed, the conveyor system takes the pellets on their final journey: into the furnace. The pellets are combusted, which boils water to create steam, which turns a turbine connected to a generator, which then feeds electricity to the national grid. The electricity travels across miles of cables, and wires, through substations and transformers, and finally into your power socket.

An engineer looking into a Drax furnace

Long journey, low emissions

Despite the number of miles travelled, the journey of biomass is tracked and managed to ensure the Drax Power Station supply chain is as low-carbon as possible. The result is that, even with all supply chain emissions considered, the power generated has a carbon emissions profile that is more than 80% lower than coal.

It might be one of the most impressive supply chains involved in powering this island – but it’s not the only one to travel thousands of miles. The journey of biomass to England joins liquefied natural gas (LNG) shipped from the Middle East, coal from Colombia and solar panels manufactured in China – imports that ensure we have readily available access to power on our shores.

Sustainability, certified

Drax Morehouse woodchip truck

Of all the changes to Drax Power Station over the last decade, perhaps the biggest is one you can’t see. Since converting three of its six generating units from coal to run primarily on compressed wood pellets, Drax has reduced those units’ greenhouse gas (GHG) emissions by over 80%.

And while this is a huge improvement, it would mean nothing if the biomass with which those reductions are achieved isn’t sustainably sourced.

For this reason, Drax works with internationally-recognised certification programmes that ensure suppliers manage their forests according to environmental, social and economic criteria.

Thanks to these certification programmes, Drax can be confident it is not only reducing GHG emissions, but supporting responsible forestry from wherever wood fibre is sourced.

Sustainability certifications

The compressed wood pellets used at Drax Power Station come from various locations around the world, so Drax relies on a number of different forest certification programmes, the three main ones being the Sustainable Forest Initiative (SFI), Forest Stewardship Council® (FSC®)1 and the Programme for the Endorsement of Forest Certification (PEFC).

The programmes share a common goal of demonstrating responsible forest management, but adoption rates vary by region. European landowners and regulators are most familiar with the FSC and national PEFC standards, while North American landowners generally prefer SFI and American Tree Farm System (also members of the PEFC family). In instances in which Drax sources wood pellets carrying these certifications, or in instances in which Drax purchase pellets sourced from certified forests, these certifications offer an additional degree of assurance that the pellets are sustainable.

Over 50% of the pellets used at Drax Power Station come from the southern USA, where SFI and American Tree Farm System are the most widely implemented certification programmes. Overall adoption levels in this region are relatively modest. However, the SFI offers an additional level of certification that can be implemented by wood-procuring entities, such as sawmills, pulp mills and pellet mills.

This programme is referred to as SFI Fiber Sourcing, and to obtain it, participants must demonstrate that the raw material in their supply chains come from legal and responsible sources. These sources may or may not include certified forests. The programme also includes requirements related to biodiversity, water quality, landowner outreach and use of forest management and harvesting professionals. Together, these certification systems have long contributed to the improvement of forest management practices in a region that provides Drax with a significant proportion of its pellets.

And since the SFI and ATFS programmes are endorsed by PEFC, North American suppliers have a pathway for their region’s sustainable forest management practices to be recognised by European stakeholders.

These certification programmes have been in use for many years. But with recent growth in the market for wood pellets, a new certification system has emerged to deal specifically with woody biomass.

Trees locked up in a bundle

New kid on the block

The Sustainable Biomass Program (SBP) was set up in 2013 as a certification system to provide assurance that woody biomass is sourced from legal and sustainable sources. But rather than replacing any previous forest certification programmes, it builds on them.

For example, SBP recognises the evidence of sustainable forest management practices gathered under these other programmes. However, the PEFC, SFI and FSC programmes do not include requirements for reporting GHG emissions, a critical gap for biomass generators as they are obligated to report these emissions to European regulators. SBP fills this gap by creating a framework for suppliers to report their emissions to the generators that purchase their pellets.

When a new entity, such as a wood pellet manufacturer, first seeks certification under SBP, that entity is required to assess its supply base.

Feedstock which has already been certified by another established certification programme (SFI, FSC®, PEFC or PEFC approved schemes) is considered SBP-compliant.

All other feedstock must be evaluated against SBP criteria, and the wood pellet manufacturer must carry out a risk assessment to identify the risk of compliance against each of the 38 SBP indicators.

If during the process a specific risk is identified, for example to the forest ecosystem, the wood pellet manufacturer must put in place mitigation measures to manage the risk, such that it can be considered to be effectively controlled or excluded.

These assessments are audited by independent, third party certification bodies and scrutinised by an independent technical committee.

In conducting the risk assessment, the wood pellet manufacturer must consult with a range of stakeholders and provide a public summary of the assessment for transparency purposes.

Sustainable energy for the UK

Counting major energy companies including DONG Energy, E.ON and Drax as members, the SBP has quickly become an authoritative voice in the industry. At the end of 2016, the SBP had 74 certificate holders across 14 countries – including Drax’s pellet manufacturing arm, Drax Biomass, in Mississippi and Louisiana.

It’s a positive step towards providing the right level of certification for woody biomass, and together with the existing forestry certifications it provides Drax with the assurance that it is powering the UK using biomass from legal and sustainable sources.

Like the fast-reducing carbon dioxide emissions of Britain’s power generation sector, it’s a change you can’t see, but one that is making a big difference.

Read the Drax principles for sustainable sourcing.

1 Drax Power Ltd FSC License Code: FSC® – C119787

Vikings, airships and ash: the history of Barlow Mound

Airship at Barlow Mound

Barlow Mound is a haven for wildlife. More than 100 different species call it home, including kingfishers, roe deer and falcons. It’s an area that looks like it’s never been touched by the industrialisation that surrounds it. The truth is very different.

Barlow mound is manmade. It was built in the 1970s using residue material from its neighbour Drax Power Station. It’s a success story of using what was then considered a waste material to create something natural and beautiful. But it has a long history before becoming what it is today and to explore that history is to track the outlook of the UK over the last millennium.

The military moves in

The area around Barlow and Drax was an important location for the very first Viking explorers who arrived here from the North Sea via the region’s Ouse and Aire rivers. But it wasn’t until 1086 that it received its first recorded mention, when it was listed as ‘Berlai-leag’ in the Domesday Book.

Translating to ‘a clearing where barley grew’, it was named by Anglo Saxon settlers, who established the region as a mix of farmland, fields and woodlands and it remained agricultural until the early twentieth century, when the country was plunged into war.

When the First World War began in 1914 and the need for new war machines arose, Sir W G Armstrong Whitworth & Co Ltd, a manufacturing company which had obtained the land in 1913 from the estate of Lord Londesborough, set up an airship factory on the site.

During its lifetime the factory constructed three airships, the 25r, R29 and R33, but when WWI ended and demand for airships sank, the factory shut down and the land passed to the Ministry of Defence (MOD).

During the Second World War the area became an important location in the country’s war efforts once again. The MOD set up an army ordnance and command supply depot manufacturing and storing items like mess tins and kerosene lamps. At one point the site also included a Prisoner of War camp.

By the 60s the UK’s needs for defence manufacturing had subsided. Instead, what it needed was more power. With the rich coal seams of the area and the existing rail network (the Hull-Barnsley line ran through), building a power station in the Barlow area was an obvious solution.

First-of-a-kind solution

In 1967 the land was bought by the Central Electric Generating Board (CEGB) which began the construction of Drax Power Station. One of the early challenges it faced was how to minimise the environmental impact to the surrounding countryside.

In particular, it needed a solution for the tonnes of ash that came from the burning of coal fuel, which included both pulverised fuel ash (PFA) and furnace bottom ash (FBA). The answer was a first-of-a-kind: build a mound using the materials.

Construction on Barlow Mound began in 1974. First the existing top soil was removed and preserved for later use, drains were added and then a layer of FBA was laid.

Next conditioned PFA was added and moulded to suit the original design, never reaching higher than 36 metres. At this height the mound would visually obscure the power station from the neighbouring houses.

The final step was to seal the mound with a polymer and then reintroduce the top soil before grass, trees and hedgerow were planted. The trees and plants had been carefully tested to ensure that their roots wouldn’t interfere with the ash and compromise the integrity of the structure.

Roe deer walking in grass field

An ecologically important area

As time has passed and Drax Power Station has produced more ash, the mound has developed and grown. More than 301 million m3 is stored in the current site – more than the capacity of three million double decker buses.

In addition to the 100 species living on the site, a tenant farmer works 20 fields and a swan rescue and wildlife hospital rehabilitates up to 2,000 birds a year. More recently, the Skylark Centre and Nature Reserve has now opened up the area to the public to explore walking trails and see the nature first-hand.

Barlow is an area that has changed consistently since 1086. From the North’s early beginnings as an agricultural hub and Anglo-Saxon settlement, to the necessity for large-scale power solutions and to the importance of preserving local ecology, Barlow is an area that has been characterised by the outlook of the country.

Like Drax Power Station, to which it is intrinsically linked, Barlow Mound is a part of the Northern Yorkshire landscape – literally and figuratively.

The new Renewable Energy Directive and what it means for biomass

European union flag against parliament in Brussels, Belgium

***This story was published the day before the announcement by the European Commission. Please scroll to the bottom of this page for the Drax view ***.

When the European Union set out its policy for the promotion of renewable energy in the 2009 Renewable Energy Directive (RED) it set a very ambitious target: by 2020, renewables should make up 20% of the EU’s energy consumption. Each Member State was given a specific goal and made to detail exactly how it would hit this.

The Directive was comprehensive in many ways, but it didn’t include a clear sustainability policy for solid biomass, including compressed wood pellets. As one of the largest sources of renewable energy in Europe, this left a policy gap that many voices – including Drax – have called to be filled.

It’s a wish that will now be granted. A revised RED is set to be published by the EU that will specify clear criteria for all biomass.

“Sustainability has always been absolutely central to our biomass strategy but Drax has always argued that there is a right way to source biomass and a wrong way.”

Dorothy Thompson, Drax Group CEO, July 2014

Importance of sustainable biomass

Biomass is a well-established and essential part of the renewable energy mix. It offers a unique mix of reliability, flexibility and affordability, all while helping to deliver carbon reductions. This makes it particularly important as countries like the UK seek to phase out coal generation and hit the targets set out in the Paris Agreement.

However, in order to secure these carbon benefits biomass needs to be produced sustainably. This means that it comes from responsibly-managed, growing forests, and that the emissions from the supply chain are measured and minimised.

In the UK there are already binding sustainability criteria but this isn’t the case across the EU. Biomass use in the UK is regulated under the EU Timber Regulations and UK’s own Renewable Obligation (RO) biomass sustainability criteria.

The RO is a form of government support designed to incentivise large scale renewable electricity generation in the UK, and to qualify for this, energy companies must adhere to sustainability standards such as properly accounting for their greenhouse gas (GHG) emissions and only sourcing from responsibly managed land and forests.

An EU-wide approach to biomass that follows the UK’s could see the implementation of a risk-based scheme that asks large energy companies to prove how they mitigate against a set of identified risks – like those in the RO criteria. However, it’s important that compliance with these is independently verified – something that could be done by using independent schemes such as the Sustainable Biomass Program (SBP).

The SBP carries out supply-base evaluation of pellet producers to ensure the wood they’re using is qualified as sustainable and they’re meeting the RO criteria. Programmes like the SBP are already being used by most major biomass power generators in the EU and could act as a blueprint for the future.

Two workers stand next to machinery at the Morehouse facility in the USA.

Efficiency where effective

Only a few of the power stations across the EU are suitable for conversion from coal to biomass but those that are, like Drax, can deliver fast, significant carbon savings.

The thermal efficiency of such stations may not be as high as a newly built plant, but they do allow governments to quickly move away from coal. More than that, these plants can continue to provide the critical services – such as voltage control and black start – the grid needs to remain stable and that other renewables can’t.

Drax is one of these stations, and in the first half of 2016 it was able to deliver around 20% of the UK’s renewable power. Thanks to its conversion to biomass, it now does this with over 80% carbon reductions relative to coal.

With the abundance of suitable and sustainably-grown fibre that can be used for biomass electricity generation, there is a strong case for the EU to encourage the coal phase out by encouraging others to undergo conversion from coal to biomass.

But what’s also needed is a clear set of sustainability criteria for biomass. The move to define this is a step in the right direction but the final EU proposal needs to be a practical one.

If the updated RED achieves this, it will mean a bright future for renewable energy in Europe and a clearer path for meeting the continent’s Paris Agreement targets.

*** 30 November, 2016 UPDATE ***

Drax welcomes Renewable Energy Directive proposal

Drax welcomes the publication of the Renewable Energy Directive and bioenergy policy proposal. Drax has been at the forefront of calling for standards based on a risk-assessment to demonstrate the sustainability of biomass used for energy production.

Matt Willey, Public Affairs Director of Drax Power had said that:

“Drax has campaigned for a robust, pragmatic biomass sustainability policy for the whole EU for many years and today is a step in the right direction. It is important that large users of biomass can demonstrate forest regeneration is taking place, that areas of high conservation value are protected, that soil and water quality is maintained and that harvesting does not exceed the long-term production capacity of the forest. We welcome the fact the Commission proposes that voluntary national or international schemes, including those which use a risk based approach, can be used to provide evidence of sustainability.”

“The UK already has the toughest sustainability rules in the world so Drax can be sure our compressed wood pellets are sustainable but it makes sense to have a common policy across the EU.”

Drax Power has made huge efforts to demonstrate the sustainability of its biomass. Sourcing from regions with large surpluses combined with low wood paying capability, Drax is able to track and trace every shipment back to low risk areas, which assures that biodiversity is protected and promotes sustainable forest management.

Building a 21st century port

In its long history, the Port of Liverpool has dealt with a number of industries. It’s a port characterised by its ability to adapt to the needs of the time. In 1715 it emerged as one of the world’s first ever wet docks. In the 18th century it was used as a hub for the slave trade.

When slavery was abolished in the early 19th century, Liverpool switched to bringing in the goods of the thriving Empire, such as cotton. When goods like cotton dried up, it switched to the fuel of the Industrial Revolution: coal.

Now as the world (and the UK government) moves away from fuels like coal and towards lower-carbon and renewable resources, the Port of Liverpool needed to adapt once again.

Gary Hodgson, Chief Operating Officer at Peel Ports, explains: “About three years ago everyone was asking, ‘What happens after coal?’”

Biomass silos at the Port of Liverpool

What happens after coal?

Peel Ports is one of the biggest operators of Liverpool’s shipping infrastructure, including Liverpool Port. Seeing that the future of coal was finite, it recognised there was a need for a port that could bring in alternative, renewable fuels.

At the same time Drax was looking for a logistics partner to facilitate the importing of compressed wood pellets. Since 2009 Drax Power Station had begun a process of upgrading its coal-fired boilers to run on sustainable biomass, sourced from huge, well-established working forests. More than this, it had plans to set up its own pellet manufacturing plants in the US South and needed to import large quantities of wood pellets.

The relationship with Peel Ports and Liverpool was obvious. This began a £100 million investment that helped transform the region’s port-station transport infrastructure.

“It’s about working in partnerships with companies,” says Hodgson. “Working this way helps develop solutions that really work.”

The central element of the partnership between Drax and Peel Ports was a radical redesigning of the technical infrastructure. Not only do compressed wood pellets have fundamentally different physical properties to other fuels like coal, they are more combustible and need to be handled safely.

For the three-million-tonne-capacity facility that Peel Ports and Drax wanted to build, innovative supply chain solutions had to be developed.

A tool used to transfer compressed biomass pellets

Shifting biomass in bulk

The first challenge was getting the high-density pellets off giant ships. For this, Peel and Drax designed a solution that uses an Archimedean screw – a long tube with a spiral winding up the inside that allows liquids, or materials that can behave like a liquid (like wood pellets), to defy gravity and travel upwards.

At the top of the screw, the pellets are emptied onto a conveyor belt and carried to one of three purpose-built silos tailored to safely storing thousands of tonnes of biomass.

Here the pellets wait until another conveyor belt deposits them onto specially-design biomass trains where they are transported across the peaks of the Pennines to Drax Power Station near Selby in North Yorkshire.

Each step at the port is automated, designed with supreme efficiency in mind by a team of Drax and Peel Port engineers. End-to-end, port to power station, the whole process can take as little as 12 hours.

Drax biomass ship in the Port of Liverpool

A new chapter for the north

In the varied history of the Port of Liverpool the new facility is another chapter, one that is helping transform the logistics infrastructure and the economic growth of the North West.

Now open and operational, the facility directly employs 50 people – around 500 additional contractors have worked on the project during its construction and development. More than that, it’s an investment in the country’s energy future. It secures a fourth port for Drax –  three others are on the east coast – helping with security of supply.

“We made this investment because we recognised this as the future of the energy mix of the country,” Hodgson explain. “We can’t just rely on one form of power – there has to be an energy mix and we see biomass as a key part of that.”

Forests, sustainability and biomass – the expert’s view

It was a forestry catastrophe that first inspired Matthew Rivers’ interest in forests.

Dutch Elm trees, an iconic part of the UK landscape for over 250 years were becoming infected with a fatal and fast-spreading disease. The race was on to save them.

A schoolboy in North London at the time, Rivers joined the after curricular school team tasked with saving its trees – first by injecting them with insecticide, and when that didn’t work, by felling and replanting them. It was an early foundation in how forests work and the challenges of keeping them healthy.

Decades later, Rivers is Director of Corporate Affairs at Drax. It’s a role he finds himself in following a career as a forester, helping to manage forestry businesses, and supporting the setting up of wood product manufacturing plants.

His own estimation of his working life is a humble one, however. “I think I’m probably a failed farmer,” he says.

“A forester always plants in hope.”

Rivers studied forestry at university in Scotland before taking up jobs in the forestry industry across the UK, Uruguay and Finland. Working in this industry, he says, is one that requires patience.

“In the UK we’re talking about 30- or 40-year growth cycles. The trees I planted at the start of my career are only just coming to maturity now,” he explains.

But more than the long investment of time, being a forester relies on faith. “A forester always plants in hope,” he says. When a forester plants a tree, he or she most commonly does not know who the end customer will be.

So when the call came from Drax for a forestry expert to help guide the company through an important transformation – upgrading the power station from coal to biomass – the challenge was one he was ready to take.

“Drax already had ambitions of converting three boilers to run on biomass. That would mean consuming tonnes of compressed wood pellets,” he says. The business needed a supply, and Rivers was drafted in to set this up.

As part of the supply solution, and Chaired by Rivers, Drax set up Drax Biomass, a pellet manufacturing business in the USA that makes and supplies compressed wood pellets to Drax Power Station.

Setting up its own manufacturing plant not only means Drax needs to rely on fewer external suppliers, but also that it can use the learnings about the technologies, the economics and the sourcing of the process to continually hone its supply chain.

To operate responsibly and receive governmental support, Drax has to be sustainable, and this is particularly important when it comes to where and how it sources its fuel. This comes with its own challenges.

No universal definition of sustainability

“To my understanding, there is no universal definition of sustainability,” says Rivers. So how do you proof your business for an unclear entity?

“At its heart, sustainability is about not doing anything today that would prejudice doing the same thing for the next generation or generations to come.”

A responsibly managed forest is one that is as healthy, productive, diverse and useful in 100 or 500 years’ time as it is today. They key to this, is to think of forests as a whole.

Rivers explains: “Think about a single tree – you fell it and use it to heat your home over one winter. But it’s going to take perhaps 30 years for that tree to grow back,” he says. “What do you do for the next 30 years?”

“In a sustainably managed forest you have all different ages of tree represented – one thirtieth devoted to each age- and, when you use an older tree to warm you in winter, you plant a replacement. That way, for every year you’ll have trees reaching maturity ready to provide your power.” It’s a cycle that, if managed responsibly, keeps delivering a useful resource as well as maintaining the health of the forest.

Rivers continues: “Sustainability is the very nature of what a forester does; because if we don’t take care of our forests, and ensure we have a crop to harvest year after year, we lose our livelihood.”

forests_trees_growing_for_winter_heating_smh4nj

Becoming a private forester

Two decades ago, Rivers completed a loop he started decades ago amidst the Dutch Elm crisis and became a forest owner himself. In Scotland, he bought, and now manages, his own private forest.

“We’ve had kids’ birthday parties, we’ve dug out a pond, we harvest chanterelles in the autumn – there’s a millennium capsule buried somewhere,” he says.

It’s not only a family heirloom. It’s a place for him to exercise a passion – maintaining and managing a responsible and healthy forest.

 

Forbes: Drax joint-second most trustworthy company in Europe

I’m delighted that Drax Group plc has been named by Forbes magazine and MSCI ESG Research as one of the 50 most trustworthy companies in Europe.

In fact, Drax came joint second across the whole continent among companies judged who ‘consistently demonstrated transparent accounting practices and solid corporate governance’.

It’s a massive tribute to everyone involved with Drax that world-leading business experts have recognised our commitment to trust and integrity in this way.

Of course, that commitment goes much further than our accounting practices alone. (I believe my British colleagues would say that it runs right through Drax like the writing in a stick of rock.)

Indeed, it was one of the reasons I was so honoured to be asked to join Drax as CFO. From my very first meeting with CEO Dorothy Thompson, I could see that Drax would always strive do the right thing, in the right way.

That’s just as true for our sustainability data as it is for our business data.

It was our commitment to doing the right thing that led Drax to take on the decision to convert Drax power station from coal to compressed wood pellets.

It is our commitment to doing the right thing that means Drax is reducing emissions by over 80 per cent while giving people and businesses all over the UK the reliable, renewable power that they need.

And we know we can save bill-payers money at the same time.

The UK is lagging far behind the rest of Europe when it comes to generating energy from compressed wood pellets. Drax is committed to bringing us closer to the European average, while helping us move from the fossil fuels of the past to the renewables of the future. And yes, you can trust us on that.