Tag: sustainability

Sustainability, certified

Drax Morehouse woodchip truck

Of all the changes to Drax Power Station over the last decade, perhaps the biggest is one you can’t see. Since converting three of its six generating units from coal to run primarily on compressed wood pellets, Drax has reduced those units’ greenhouse gas (GHG) emissions by over 80%.

And while this is a huge improvement, it would mean nothing if the biomass with which those reductions are achieved isn’t sustainably sourced.

For this reason, Drax works with internationally-recognised certification programmes that ensure suppliers manage their forests according to environmental, social and economic criteria.

Thanks to these certification programmes, Drax can be confident it is not only reducing GHG emissions, but supporting responsible forestry from wherever wood fibre is sourced.

Sustainability certifications

The compressed wood pellets used at Drax Power Station come from various locations around the world, so Drax relies on a number of different forest certification programmes, the three main ones being the Sustainable Forest Initiative (SFI), Forest Stewardship Council® (FSC®)1 and the Programme for the Endorsement of Forest Certification (PEFC).

The programmes share a common goal of demonstrating responsible forest management, but adoption rates vary by region. European landowners and regulators are most familiar with the FSC and national PEFC standards, while North American landowners generally prefer SFI and American Tree Farm System (also members of the PEFC family). In instances in which Drax sources wood pellets carrying these certifications, or in instances in which Drax purchase pellets sourced from certified forests, these certifications offer an additional degree of assurance that the pellets are sustainable.

Over 50% of the pellets used at Drax Power Station come from the southern USA, where SFI and American Tree Farm System are the most widely implemented certification programmes. Overall adoption levels in this region are relatively modest. However, the SFI offers an additional level of certification that can be implemented by wood-procuring entities, such as sawmills, pulp mills and pellet mills.

This programme is referred to as SFI Fiber Sourcing, and to obtain it, participants must demonstrate that the raw material in their supply chains come from legal and responsible sources. These sources may or may not include certified forests. The programme also includes requirements related to biodiversity, water quality, landowner outreach and use of forest management and harvesting professionals. Together, these certification systems have long contributed to the improvement of forest management practices in a region that provides Drax with a significant proportion of its pellets.

And since the SFI and ATFS programmes are endorsed by PEFC, North American suppliers have a pathway for their region’s sustainable forest management practices to be recognised by European stakeholders.

These certification programmes have been in use for many years. But with recent growth in the market for wood pellets, a new certification system has emerged to deal specifically with woody biomass.

Trees locked up in a bundle

New kid on the block

The Sustainable Biomass Program (SBP) was set up in 2013 as a certification system to provide assurance that woody biomass is sourced from legal and sustainable sources. But rather than replacing any previous forest certification programmes, it builds on them.

For example, SBP recognises the evidence of sustainable forest management practices gathered under these other programmes. However, the PEFC, SFI and FSC programmes do not include requirements for reporting GHG emissions, a critical gap for biomass generators as they are obligated to report these emissions to European regulators. SBP fills this gap by creating a framework for suppliers to report their emissions to the generators that purchase their pellets.

When a new entity, such as a wood pellet manufacturer, first seeks certification under SBP, that entity is required to assess its supply base.

Feedstock which has already been certified by another established certification programme (SFI, FSC®, PEFC or PEFC approved schemes) is considered SBP-compliant.

All other feedstock must be evaluated against SBP criteria, and the wood pellet manufacturer must carry out a risk assessment to identify the risk of compliance against each of the 38 SBP indicators.

If during the process a specific risk is identified, for example to the forest ecosystem, the wood pellet manufacturer must put in place mitigation measures to manage the risk, such that it can be considered to be effectively controlled or excluded.

These assessments are audited by independent, third party certification bodies and scrutinised by an independent technical committee.

In conducting the risk assessment, the wood pellet manufacturer must consult with a range of stakeholders and provide a public summary of the assessment for transparency purposes.

Sustainable energy for the UK

Counting major energy companies including DONG Energy, E.ON and Drax as members, the SBP has quickly become an authoritative voice in the industry. At the end of 2016, the SBP had 74 certificate holders across 14 countries – including Drax’s pellet manufacturing arm, Drax Biomass, in Mississippi and Louisiana.

It’s a positive step towards providing the right level of certification for woody biomass, and together with the existing forestry certifications it provides Drax with the assurance that it is powering the UK using biomass from legal and sustainable sources.

Like the fast-reducing carbon dioxide emissions of Britain’s power generation sector, it’s a change you can’t see, but one that is making a big difference.

Read the Drax principles for sustainable sourcing.

1 Drax Power Ltd FSC License Code: FSC® – C119787

Forests are more powerful than you think – here’s why

Almost one third of the earth’s land mass is covered by forests. That’s an area of around 4 billion hectares, or roughly four times the size of the US.

In addition to being a prominent feature across the global landscape, forests also play a significant role in how we live. They make the air cleaner in cities and absorb carbon from the atmosphere. They provide bio-diversity and habits for wildlife. They also provide essential forest products such as paper, building materials and wood pellets for energy.

To celebrate the UN’s International Day of Forests, we’re looking at some of the reasons why forests and wood fuel are more powerful than you might think.

They’re a major source of renewable energyFamily at home using renewable energy.

Nearly half of the world’s renewable energy comes from forests in the form of wood fuel. Roughly 2.4 billion people around the world use it for things like cooking, heating and generating electricity. In fact, about 50% of the total global wood production is currently used for these purposes.

However, it is critical that this resource is managed sustainably and responsibly. One of the key aims of the International Day of Forests is to encourage people to utilise their local forest resources sustainably to ensure it endures for future generations.

They can revitalise economiesA truck unloading.

Because wood fuel is such a widely used energy source, it also supports a healthy, vibrant industry. Roughly 900 million people work in the wood energy sector globally.

More than that, rural economies built on wood energy can be revitalised by modernisation, which can then stimulate local business. Investment can help finance better forest management, which in turn leads to forest growth, improvements in sustainability standards and in some cases, increased employment.

They can help mitigate climate changeYoung sapling forest.

The world’s forests have an energy content about 10 times that of the global annual primary energy consumption, which makes it a hugely useful resource in helping meet energy demand in a sustainable and renewable way.

When wood is used as fuel it releases carbon dioxide (CO2). However, if this fuel is drawn from a responsibly managed forest or sustainable system of growing forests this carbon is offset by new tree plantings. The only emissions produced therefore are the ones involved in transporting the wood itself. The US Food and Agriculture Organization predict that by 2030 forestry mitigation with the help of carbon pricing could contribute to reductions of 0.2 to 13.8 Gigatonnes (Gt) CO2 a year.

Vikings, airships and ash: the history of Barlow Mound

Airship at Barlow Mound

Barlow Mound is a haven for wildlife. More than 100 different species call it home, including kingfishers, roe deer and falcons. It’s an area that looks like it’s never been touched by the industrialisation that surrounds it. The truth is very different.

Barlow mound is manmade. It was built in the 1970s using residue material from its neighbour Drax Power Station. It’s a success story of using what was then considered a waste material to create something natural and beautiful. But it has a long history before becoming what it is today and to explore that history is to track the outlook of the UK over the last millennium.

The military moves in

The area around Barlow and Drax was an important location for the very first Viking explorers who arrived here from the North Sea via the region’s Ouse and Aire rivers. But it wasn’t until 1086 that it received its first recorded mention, when it was listed as ‘Berlai-leag’ in the Domesday Book.

Translating to ‘a clearing where barley grew’, it was named by Anglo Saxon settlers, who established the region as a mix of farmland, fields and woodlands and it remained agricultural until the early twentieth century, when the country was plunged into war.

When the First World War began in 1914 and the need for new war machines arose, Sir W G Armstrong Whitworth & Co Ltd, a manufacturing company which had obtained the land in 1913 from the estate of Lord Londesborough, set up an airship factory on the site.

During its lifetime the factory constructed three airships, the 25r, R29 and R33, but when WWI ended and demand for airships sank, the factory shut down and the land passed to the Ministry of Defence (MOD).

During the Second World War the area became an important location in the country’s war efforts once again. The MOD set up an army ordnance and command supply depot manufacturing and storing items like mess tins and kerosene lamps. At one point the site also included a Prisoner of War camp.

By the 60s the UK’s needs for defence manufacturing had subsided. Instead, what it needed was more power. With the rich coal seams of the area and the existing rail network (the Hull-Barnsley line ran through), building a power station in the Barlow area was an obvious solution.

First-of-a-kind solution

In 1967 the land was bought by the Central Electric Generating Board (CEGB) which began the construction of Drax Power Station. One of the early challenges it faced was how to minimise the environmental impact to the surrounding countryside.

In particular, it needed a solution for the tonnes of ash that came from the burning of coal fuel, which included both pulverised fuel ash (PFA) and furnace bottom ash (FBA). The answer was a first-of-a-kind: build a mound using the materials.

Construction on Barlow Mound began in 1974. First the existing top soil was removed and preserved for later use, drains were added and then a layer of FBA was laid.

Next conditioned PFA was added and moulded to suit the original design, never reaching higher than 36 metres. At this height the mound would visually obscure the power station from the neighbouring houses.

The final step was to seal the mound with a polymer and then reintroduce the top soil before grass, trees and hedgerow were planted. The trees and plants had been carefully tested to ensure that their roots wouldn’t interfere with the ash and compromise the integrity of the structure.

Roe deer walking in grass field

An ecologically important area

As time has passed and Drax Power Station has produced more ash, the mound has developed and grown. More than 301 million m3 is stored in the current site – more than the capacity of three million double decker buses.

In addition to the 100 species living on the site, a tenant farmer works 20 fields and a swan rescue and wildlife hospital rehabilitates up to 2,000 birds a year. More recently, the Skylark Centre and Nature Reserve has now opened up the area to the public to explore walking trails and see the nature first-hand.

Barlow is an area that has changed consistently since 1086. From the North’s early beginnings as an agricultural hub and Anglo-Saxon settlement, to the necessity for large-scale power solutions and to the importance of preserving local ecology, Barlow is an area that has been characterised by the outlook of the country.

Like Drax Power Station, to which it is intrinsically linked, Barlow Mound is a part of the Northern Yorkshire landscape – literally and figuratively.

The new Renewable Energy Directive and what it means for biomass

European union flag against parliament in Brussels, Belgium

***This story was published the day before the announcement by the European Commission. Please scroll to the bottom of this page for the Drax view ***.

When the European Union set out its policy for the promotion of renewable energy in the 2009 Renewable Energy Directive (RED) it set a very ambitious target: by 2020, renewables should make up 20% of the EU’s energy consumption. Each Member State was given a specific goal and made to detail exactly how it would hit this.

The Directive was comprehensive in many ways, but it didn’t include a clear sustainability policy for solid biomass, including compressed wood pellets. As one of the largest sources of renewable energy in Europe, this left a policy gap that many voices – including Drax – have called to be filled.

It’s a wish that will now be granted. A revised RED is set to be published by the EU that will specify clear criteria for all biomass.

“Sustainability has always been absolutely central to our biomass strategy but Drax has always argued that there is a right way to source biomass and a wrong way.”

Dorothy Thompson, Drax Group CEO, July 2014

Importance of sustainable biomass

Biomass is a well-established and essential part of the renewable energy mix. It offers a unique mix of reliability, flexibility and affordability, all while helping to deliver carbon reductions. This makes it particularly important as countries like the UK seek to phase out coal generation and hit the targets set out in the Paris Agreement.

However, in order to secure these carbon benefits biomass needs to be produced sustainably. This means that it comes from responsibly-managed, growing forests, and that the emissions from the supply chain are measured and minimised.

In the UK there are already binding sustainability criteria but this isn’t the case across the EU. Biomass use in the UK is regulated under the EU Timber Regulations and UK’s own Renewable Obligation (RO) biomass sustainability criteria.

The RO is a form of government support designed to incentivise large scale renewable electricity generation in the UK, and to qualify for this, energy companies must adhere to sustainability standards such as properly accounting for their greenhouse gas (GHG) emissions and only sourcing from responsibly managed land and forests.

An EU-wide approach to biomass that follows the UK’s could see the implementation of a risk-based scheme that asks large energy companies to prove how they mitigate against a set of identified risks – like those in the RO criteria. However, it’s important that compliance with these is independently verified – something that could be done by using independent schemes such as the Sustainable Biomass Program (SBP).

The SBP carries out supply-base evaluation of pellet producers to ensure the wood they’re using is qualified as sustainable and they’re meeting the RO criteria. Programmes like the SBP are already being used by most major biomass power generators in the EU and could act as a blueprint for the future.

Two workers stand next to machinery at the Morehouse facility in the USA.

Efficiency where effective

Only a few of the power stations across the EU are suitable for conversion from coal to biomass but those that are, like Drax, can deliver fast, significant carbon savings.

The thermal efficiency of such stations may not be as high as a newly built plant, but they do allow governments to quickly move away from coal. More than that, these plants can continue to provide the critical services – such as voltage control and black start – the grid needs to remain stable and that other renewables can’t.

Drax is one of these stations, and in the first half of 2016 it was able to deliver around 20% of the UK’s renewable power. Thanks to its conversion to biomass, it now does this with over 80% carbon reductions relative to coal.

With the abundance of suitable and sustainably-grown fibre that can be used for biomass electricity generation, there is a strong case for the EU to encourage the coal phase out by encouraging others to undergo conversion from coal to biomass.

But what’s also needed is a clear set of sustainability criteria for biomass. The move to define this is a step in the right direction but the final EU proposal needs to be a practical one.

If the updated RED achieves this, it will mean a bright future for renewable energy in Europe and a clearer path for meeting the continent’s Paris Agreement targets.

*** 30 November, 2016 UPDATE ***

Drax welcomes Renewable Energy Directive proposal

Drax welcomes the publication of the Renewable Energy Directive and bioenergy policy proposal. Drax has been at the forefront of calling for standards based on a risk-assessment to demonstrate the sustainability of biomass used for energy production.

Matt Willey, Public Affairs Director of Drax Power had said that:

“Drax has campaigned for a robust, pragmatic biomass sustainability policy for the whole EU for many years and today is a step in the right direction. It is important that large users of biomass can demonstrate forest regeneration is taking place, that areas of high conservation value are protected, that soil and water quality is maintained and that harvesting does not exceed the long-term production capacity of the forest. We welcome the fact the Commission proposes that voluntary national or international schemes, including those which use a risk based approach, can be used to provide evidence of sustainability.”

“The UK already has the toughest sustainability rules in the world so Drax can be sure our compressed wood pellets are sustainable but it makes sense to have a common policy across the EU.”

Drax Power has made huge efforts to demonstrate the sustainability of its biomass. Sourcing from regions with large surpluses combined with low wood paying capability, Drax is able to track and trace every shipment back to low risk areas, which assures that biodiversity is protected and promotes sustainable forest management.

Building a 21st century port

In its long history, the Port of Liverpool has dealt with a number of industries. It’s a port characterised by its ability to adapt to the needs of the time. In 1715 it emerged as one of the world’s first ever wet docks. In the 18th century it was used as a hub for the slave trade.

When slavery was abolished in the early 19th century, Liverpool switched to bringing in the goods of the thriving Empire, such as cotton. When goods like cotton dried up, it switched to the fuel of the Industrial Revolution: coal.

Now as the world (and the UK government) moves away from fuels like coal and towards lower-carbon and renewable resources, the Port of Liverpool needed to adapt once again.

Gary Hodgson, Chief Operating Officer at Peel Ports, explains: “About three years ago everyone was asking, ‘What happens after coal?’”

Biomass silos at the Port of Liverpool

What happens after coal?

Peel Ports is one of the biggest operators of Liverpool’s shipping infrastructure, including Liverpool Port. Seeing that the future of coal was finite, it recognised there was a need for a port that could bring in alternative, renewable fuels.

At the same time Drax was looking for a logistics partner to facilitate the importing of compressed wood pellets. Since 2009 Drax Power Station had begun a process of upgrading its coal-fired boilers to run on sustainable biomass, sourced from huge, well-established working forests. More than this, it had plans to set up its own pellet manufacturing plants in the US South and needed to import large quantities of wood pellets.

The relationship with Peel Ports and Liverpool was obvious. This began a £100 million investment that helped transform the region’s port-station transport infrastructure.

“It’s about working in partnerships with companies,” says Hodgson. “Working this way helps develop solutions that really work.”

The central element of the partnership between Drax and Peel Ports was a radical redesigning of the technical infrastructure. Not only do compressed wood pellets have fundamentally different physical properties to other fuels like coal, they are more combustible and need to be handled safely.

For the three-million-tonne-capacity facility that Peel Ports and Drax wanted to build, innovative supply chain solutions had to be developed.

A tool used to transfer compressed biomass pellets

Shifting biomass in bulk

The first challenge was getting the high-density pellets off giant ships. For this, Peel and Drax designed a solution that uses an Archimedean screw – a long tube with a spiral winding up the inside that allows liquids, or materials that can behave like a liquid (like wood pellets), to defy gravity and travel upwards.

At the top of the screw, the pellets are emptied onto a conveyor belt and carried to one of three purpose-built silos tailored to safely storing thousands of tonnes of biomass.

Here the pellets wait until another conveyor belt deposits them onto specially-design biomass trains where they are transported across the peaks of the Pennines to Drax Power Station near Selby in North Yorkshire.

Each step at the port is automated, designed with supreme efficiency in mind by a team of Drax and Peel Port engineers. End-to-end, port to power station, the whole process can take as little as 12 hours.

Drax biomass ship in the Port of Liverpool

A new chapter for the north

In the varied history of the Port of Liverpool the new facility is another chapter, one that is helping transform the logistics infrastructure and the economic growth of the North West.

Now open and operational, the facility directly employs 50 people – around 500 additional contractors have worked on the project during its construction and development. More than that, it’s an investment in the country’s energy future. It secures a fourth port for Drax –  three others are on the east coast – helping with security of supply.

“We made this investment because we recognised this as the future of the energy mix of the country,” Hodgson explain. “We can’t just rely on one form of power – there has to be an energy mix and we see biomass as a key part of that.”

Forests, sustainability and biomass – the expert’s view

It was a forestry catastrophe that first inspired Matthew Rivers’ interest in forests.

Dutch Elm trees, an iconic part of the UK landscape for over 250 years were becoming infected with a fatal and fast-spreading disease. The race was on to save them.

A schoolboy in North London at the time, Rivers joined the after curricular school team tasked with saving its trees – first by injecting them with insecticide, and when that didn’t work, by felling and replanting them. It was an early foundation in how forests work and the challenges of keeping them healthy.

Decades later, Rivers is Director of Corporate Affairs at Drax. It’s a role he finds himself in following a career as a forester, helping to manage forestry businesses, and supporting the setting up of wood product manufacturing plants.

His own estimation of his working life is a humble one, however. “I think I’m probably a failed farmer,” he says.

“A forester always plants in hope.”

Rivers studied forestry at university in Scotland before taking up jobs in the forestry industry across the UK, Uruguay and Finland. Working in this industry, he says, is one that requires patience.

“In the UK we’re talking about 30- or 40-year growth cycles. The trees I planted at the start of my career are only just coming to maturity now,” he explains.

But more than the long investment of time, being a forester relies on faith. “A forester always plants in hope,” he says. When a forester plants a tree, he or she most commonly does not know who the end customer will be.

So when the call came from Drax for a forestry expert to help guide the company through an important transformation – upgrading the power station from coal to biomass – the challenge was one he was ready to take.

“Drax already had ambitions of converting three boilers to run on biomass. That would mean consuming tonnes of compressed wood pellets,” he says. The business needed a supply, and Rivers was drafted in to set this up.

As part of the supply solution, and Chaired by Rivers, Drax set up Drax Biomass, a pellet manufacturing business in the USA that makes and supplies compressed wood pellets to Drax Power Station.

Setting up its own manufacturing plant not only means Drax needs to rely on fewer external suppliers, but also that it can use the learnings about the technologies, the economics and the sourcing of the process to continually hone its supply chain.

To operate responsibly and receive governmental support, Drax has to be sustainable, and this is particularly important when it comes to where and how it sources its fuel. This comes with its own challenges.

No universal definition of sustainability

“To my understanding, there is no universal definition of sustainability,” says Rivers. So how do you proof your business for an unclear entity?

“At its heart, sustainability is about not doing anything today that would prejudice doing the same thing for the next generation or generations to come.”

A responsibly managed forest is one that is as healthy, productive, diverse and useful in 100 or 500 years’ time as it is today. They key to this, is to think of forests as a whole.

Rivers explains: “Think about a single tree – you fell it and use it to heat your home over one winter. But it’s going to take perhaps 30 years for that tree to grow back,” he says. “What do you do for the next 30 years?”

“In a sustainably managed forest you have all different ages of tree represented – one thirtieth devoted to each age- and, when you use an older tree to warm you in winter, you plant a replacement. That way, for every year you’ll have trees reaching maturity ready to provide your power.” It’s a cycle that, if managed responsibly, keeps delivering a useful resource as well as maintaining the health of the forest.

Rivers continues: “Sustainability is the very nature of what a forester does; because if we don’t take care of our forests, and ensure we have a crop to harvest year after year, we lose our livelihood.”

forests_trees_growing_for_winter_heating_smh4nj

Becoming a private forester

Two decades ago, Rivers completed a loop he started decades ago amidst the Dutch Elm crisis and became a forest owner himself. In Scotland, he bought, and now manages, his own private forest.

“We’ve had kids’ birthday parties, we’ve dug out a pond, we harvest chanterelles in the autumn – there’s a millennium capsule buried somewhere,” he says.

It’s not only a family heirloom. It’s a place for him to exercise a passion – maintaining and managing a responsible and healthy forest.

 

5 things you never knew about forests

Background. Fir tree branch with dew drops on a blurred background of sunlight

Forests and the products we derive from them are one of the most ubiquitous aspects of human civilisation. Despite the rapid pace of modern life, that isn’t changing.

Forest still covers 30% of the world’s land and in the UK more than an estimated 55 million m3 of wood was used in 2015 – either directly through furniture, books or hygiene paper, or indirectly, in infrastructure like fences, railways or through biomass electricity generation.

Behind all this lies the forest and the industry surrounding it. But how much do you really know about forests?

In some regions forests are increasing

Mention forestry, and there are plenty of people who make the jump to the activities of unscrupulous developers and deforestation. But while forest land is declining worldwide (in fact, we’ve lost 129 million hectares since 1990), the good news is the rate of decline is dropping sharply, down 50% across the same period.

A lot of this is thanks to growing environmental awareness, responsible forestry management and reforestation around the world. 10,000 hectares of new woodland was created in the UK in 2014 and in the USA, where a third of all land is forested, forestland has been consistently increasing over the last 25 years. There’s been an increase of roughly 7.6 million hectares between 1990 and 2015.

Vigorously growing forests absorb CO2 faster

It’s well known that trees are “the lungs of the earth”, but not all trees or ages are equally effective at absorbing the greenhouse gas CO2. A growing, younger forest is a better sink for carbon dioxide than a forest that is mature and stable. This has implications for the way these resources are used – notably when it comes to the sourcing of material for compressed wood pellets.

Whereas coal releases carbon that has been trapped underground for millions of years, wood releases carbon captured within its lifetime, making it a very low carbon fuel once manufacturing and transportation are factored in. The technique is to harvest trees when they have stopped growing at a fast rate, use the wood for forest products such as timber, pulpwood or compressed wood pellets for energy and replant the area with new, high growth potential trees. The result is a forest with a steady stream of CO2-hungry young trees and a steady stream of renewable raw material.

Forests can stop floods

 A study led by the Universities of Birmingham and Southampton and funded by the Environment Agency, found that forests in Europe play an important role in mitigating the effects of heavy rain.

Thanks to the buffering abilities of the forest canopy and the enormous water absorption capacity of woods and forests, they can slow the flow of a sudden downpour of rain overfilling nearby streams or rivers. This water will eventually be released but slowing its movement mitigates flash flooding.

Different parts of the forest have different uses

The primary commercial product from forests is not a hard one to guess: wood. But there’s more to it than that. For construction timber, the lower, thicker parts of a tree’s trunk are used. Smaller parts of the trunk are used as pulpwood which can be used to make paper, panels or for energy. Residues from the wood processing industry such as sawdust can also be used for compressed wood pellets.

With the rise of the internet, smartphones and e-readers the paper market has been shrinking. Manufacture of high-density wood pellets helps replace demand for wood once used by the paper market, as pellets can be made using low-grade wood, thinnings and residues not used in construction or furniture.

Trees talk to each other

Until recently it was thought that trees perform most of their biological functions in isolation from each other. But biologists have learned in recent years that in fact they communicate and help each other.

Under the forest floor, trees’ roots are linked by bright white and yellow fungal threads, called mycelium. In a forest, these threads act as a kind of network, linking trees to one another.

These links enable trees to share nutrients, carbon and water. Some species of tree also increase nitrogen uptake in the soil and help to improve the conditions in which other species grow. In fact, research by the University of British Columbia, indicates that certain large, older trees that rise above the forest act as ‘mother trees’ which actively help to ‘manage’ the resources for the other trees in the forest.

Based on their findings, it seems trees not only talk to each other, but help each other grow too.

Forbes: Drax joint-second most trustworthy company in Europe

I’m delighted that Drax Group plc has been named by Forbes magazine and MSCI ESG Research as one of the 50 most trustworthy companies in Europe.

In fact, Drax came joint second across the whole continent among companies judged who ‘consistently demonstrated transparent accounting practices and solid corporate governance’.

It’s a massive tribute to everyone involved with Drax that world-leading business experts have recognised our commitment to trust and integrity in this way.

Of course, that commitment goes much further than our accounting practices alone. (I believe my British colleagues would say that it runs right through Drax like the writing in a stick of rock.)

Indeed, it was one of the reasons I was so honoured to be asked to join Drax as CFO. From my very first meeting with CEO Dorothy Thompson, I could see that Drax would always strive do the right thing, in the right way.

That’s just as true for our sustainability data as it is for our business data.

It was our commitment to doing the right thing that led Drax to take on the decision to convert Drax power station from coal to compressed wood pellets.

It is our commitment to doing the right thing that means Drax is reducing emissions by over 80 per cent while giving people and businesses all over the UK the reliable, renewable power that they need.

And we know we can save bill-payers money at the same time.

The UK is lagging far behind the rest of Europe when it comes to generating energy from compressed wood pellets. Drax is committed to bringing us closer to the European average, while helping us move from the fossil fuels of the past to the renewables of the future. And yes, you can trust us on that.

Sustainable Biomass Program – proving biomass is sustainable

I was honoured to be able to accept the Excellence in Bioenergy award recently. Not for myself, but on behalf of all my colleagues at Drax who have worked so hard to make a reality of our shared plan to generate reliable, renewable electricity. Our achievements are truly a team effort.

In 2015, Drax became a predominantly biomass-fuelled power station.

We now generate more electricity at Drax power station from compressed low-grade wood pellets than from coal – between three and four per cent of the UK’s entire demand every day.

It’s a major triumph for all the brilliant engineers involved in converting the plant and everyone who has helped secure the incredibly complex supply chain that keeps it running.

But we truly believe that this is only the beginning for sustainable biomass.

Sustainable biomass is the ideal fuel to help the world decarbonise in an affordable and reliable way. It can support other renewables like wind and solar when the elements are against them and backup power is needed.

Because it can be created by upgrading existing coal-fired power stations, it can be added to the electricity grid in a fraction of the time and for a fraction of the cost of building new power stations. Why should the UK only build brand-new gas and nuclear power stations when existing coal power stations can be upgraded to low carbon, renewable tech? At Drax, we have shown how engineers working at what once was the biggest coal power station in western Europe can use their expertise to work with compressed wood pellet power generation.

And it can save bill payers billions of pounds when the true costs of bringing other renewables on stream are taken into account.

The industry’s greatest challenge right now is in proving that all the biomass we use is truly sustainable.

At Drax we have proven the sustainability of the biomass we use time and time again. But we can and will do more to ensure that standards right across the industry are always equally high.

We cannot underestimate the importance of sustainability. No corners can be cut. We must all join together and meet this challenge. Because without sustainable biomass there will be no industry at all. Without sustainable biomass in a balanced energy system with other renewables and low carbon technologies, the Paris climate change summit commitments may not be reached.

This is why the Sustainable Biomass Program is so important. The SBP has developed a certification framework  to provide assurance that woody biomass is sourced from legal and sustainable sources.

By working with the SBP, all of us in the industry alongside hard working families and businesses stand to benefit. Which is why all of us at Drax welcome its inception, and look forward to working with the SBP to help build a growing and healthy industry that helps our society transition to the renewable fuels of the future.

May 2017 update: the SBP has changed its name to the Sustainable Biomass Program — you can read its first annual report here.