Tag: renewable energy

The 8 biggest things in renewable energy

Powering a whole country is a big task. The equipment that make up power stations and electricity systems are measured in tonnes and miles, and pump gigawatts (GW) of electricity around the country. With the world’s electricity increasingly coming from renewables, this big thinking is key to powering long-term change.

From taller wind turbines to bigger batteries, these are the massive structures breaking energy records.

Germany’s giant wind turbine and the plan to beat it

As wind power becomes ever more prevalent, one of the key questions that needs answering is how to get more out of it. One way is to build taller turbines and longer blades. Putting turbines higher into the air sets them into stronger wind flows, while longer blades increase their generating capacity.

The world’s tallest wind turbines are currently in Gaildorf, Germany and stand at 178 metres with the blades tips reaching 246.5 metres. Built by Max Bögl Wind AG, the onshore turbines house a 3.4 megawatt (MW) generator that can produce around 10.5 gigawatt hours (GWh) per year.

However, turbines continue to grow and GE has announced plans for the Haliade-X turbine, which will ship in 2021. At 259 metres in total the offshore turbine is almost double the height of the London Eye and will spin 106 metre blades, generating 67 GWh per year.

China’s ‘Great Wall of Solar’

China has pumped substantial investment into solar power, including the world’s biggest solar plant in electricity generation and sheer size. Dubbed the ‘Great Wall of Solar’, the Tengger Desert Solar Park has a capacity of more than 1.5 GW and covers 43 km2 of desert.

The next largest, by comparison, is India’s Kurnool Ultra Mega Solar Park, which covers just 24 km2 and generates 1 GW. However, rampant investment by the country means there are several projects in the pipeline that will break the 2 GW mark and will set new records for solar power plants.

Morocco takes solar to new heights

Concentrated solar power (CSP) takes the technology skywards by using thousands of mirrors, known as heliostats, and focusing the sun’s rays towards a central tower. This heats up molten salt within the tower, which is then combined with water to create steam and power a turbine – like in a thermal power plant.

Morocco’s Noor Ouarzazate facility (pictured in the main photo of this article) is home to the world’s tallest CSP towers. At 250 metres tall, 7,400 heliostats beam the sunlight at each tower, which have a capacity of 150 MW and can store molten salt for 7.5 hours. Its record will soon be matched by Israel’s 121 MW Ashalim Solar Thermal Power Station when it begins operating this year.

However, never one to be outdone when it comes to tall structures, Dubai plans to build a 260 metre CSP tower in 2020 as part of the Mohammed bin Rashid Al Maktoum Solar Park, which at 700 MW will be the world’s largest single-site CSP facility.

Three Gorges Dam

China’s monster mountain dam

The Three Gorges Dam on China’s Yangtza river might be the world’s most powerful hydropower dam with its massive 22.5 GW capacity, but a different Chinese dam holds the title of the world’s tallest.

Jinping-I Hydropower Station is a 305-metre-tall arch dam on the Yalong River. It sits on the Jinping Bend where the river wraps around the entire Jinping mountain range. The project began in 2005 and was completed with the commissioning of a sixth and final generator in 2014, which brought its total capacity to 3.6 GW.

Itaipu Dam and hydropower station

Brazil and Paraguay’s river arrangement

While it may be tall, at 568 metres-long, Jinping-I is far from the longest. That mantle belongs to the 7,919 metre-long Itaipu Dam and hydropower station that straddles Brazil and Paraguay and has an installed capacity of 14 GW.

The power station is home to 20, 700 MW generators, however, as Brazil’s electricity system runs at 60Hz and Paraguay’s at 50Hz, 10 of the generators run at each frequency.

Biomass domes that could hide the Albert Hall

Using a relatively new material, such as compressed wood pellets as a renewable alternative to coal in large thermal power stations creates new challenges. Biomass ‘ecostore’ domes help tackle storage problems by keeping the materials dry and maintaining the right temperatures and conditions.

Unlike cylindrical, concrete silos, domes also offer greater resistance to hurricanes and extreme weather. This is important in areas such as Louisiana where this low carbon fuel  is stored at the Drax Biomass port facility in 35.7 metre high, 61.6 metre diameter domes before it is shipped to Drax Power Station.

The power station itself is home to four of the world’s largest biomass domes. Each is 50.3 metres high and 63 metres in diameter – enough to hold the Albert Hall, or in Drax’s case 71,000 tonnes of biomass.

South Korean coastline takes the most from the tides

Beginning operation 1966, the Rance Tidal Power Station, in France was the first and largest facility of its kind for 45 years. The power station made use of the 750 metre-long Rance Barrage on France’s northern coast with a 330-metre-long section of it generating electricity through 24, 10 MW turbines.

It was overtaken, however, in 2011 with the opening of the Sihwa Lake Tidal Power Station in South Korea. The facility generates power along a 400-metre section of the 12.7 km Sihwa Lake tidal barrage and generates a maximum of 254 MW through ten 25.4 MW submerged turbines.

The battle to beat Tesla’s giant battery

South Australia has become a battlefield in the race to build the world’s biggest grid scale storage solution. Tesla constructed a 10,000 m2, football pitch-sized 100 MW lithium-ion battery outside of Adelaide at the end of 2017 which is connected to a wind power plant and can independently supply electricity to 30,000 homes for an hour.

However, rival billionaire to Tesla’s Elon Musk, Sanjeev Gupta plans to take on the storage facility with a 140 MW battery to support a new solar-powered steelworks, also in South Australia.

The excitement around battery technology’s potential means the title of world’s biggest will likely swap hands plenty more times over the next decade. This contest won’t just be confined to batteries. As countries increasingly move away from fossil fuels, bigger, wider and taller renewable structures will be needed to power the world. These are the world’s largest renewable structures today, but they probably won’t stay in those positions for long.

The companies making coal history

Coal has been the backbone of electricity generation for well over a century – but times have changed. A growing understanding of fossil fuels’ contribution to pollution and global climate change means more energy companies around the world now realise their long-term success depends on moving away from coal. As a result, between 2015 and last year, construction of new coal-powered plants dropped by 73%.

The Powering Past Coal Alliance is an initiative helping facilitate this move. It brings together those working  moving completely away from coal, and is comprised of a number of governments, businesses and energy companies – including Drax. However, it isn’t the only initiative of its type – nor is Drax the only electricity generator fast moving away from coal.

Here we look at some of the other companies giving coal the cold shoulder. 

Avedøre is a high efficiency, multi-fuel combined heat and power plant in Denmark operated by Ørsted. Source: Ørsted

Ørsted

Denmark’s partly state-owned, global energy firm (once called DONG, an acronym for Danish Oil and Natural Gas) is one of the largest of the Alliance’s members leading the charge away from coal. The company is at the forefront of the energy sector’s transformation towards renewables.

It is the global leader in offshore wind, having installed more than one quarter of the world’s total offshore wind capacity.

More recently the company changed its name to Ørsted after the Danish scientist who first discovered that electric currents create magnetic fields.

The name change reflects the company’s move away from fossil fuels, including coal. The company has slashed its coal usage from 6.2 million tonnes in 2006 to 1.1 million last year, and aims to reach zero by 2023, as well as cutting its CO2 emissions by 96%.

This is thanks largely to the massive growth in Ørsted’s offshore wind farm business, as well as the conversion of six of Ørsted’s Danish coal-fired power stations to biomass. The company aims to have enough wind capacity by 2020 to supply 16 million people in Europe.

Xcel Energy

Coal is something of a controversial topic in the US these days. However, forward-thinking electricity generators in the country are quickly moving from contentious fossil fuels to renewables.

Mid-west-based Xcel Energy is laying out a timeline to switch the majority of its generation from coal to carbon-free sources. The company plans to retire 20 of its coal units between 2005 and 2026 – 40% of its total coal capacity – and expand its renewable portfolio in its place.

Xcel’s ambitions are perhaps clearest in Colorado, where it recently announced it will bring forward the closure of about a third of its coal fleet by a decade.

Alongside these coal closures, the company plans to construct 1,131 megawatts (MW) of new wind capacity, 707 MW of new solar power and 275 MW of battery storage in the state. Nationwide, Xcel says it is on course to hit a 50% reduction of its 2005 carbon emissions levels by 2022. 

Enel Generación Chile

Italian electricity giant Enel’s Chilean arm is one of the companies signed up to the Chilean government’s target of generating 70% of its electricity by renewable sources by 2050. In a positive move towards this, the firm recently closed a deal to build 242 MW of new solar, wind and geothermal generation, adding to its already growing roster of renewables.

Last year, Enel Green Power Chile and ENAP opened the Cerro Pabellón geothermal plant in the country’s Atacama Desert. Located 4,500 meters above sea level, it is the first facility of its kind in South America and uses Chile’s volcanic landscape to produce 340 GWh per year.

It comes as a part of Enel’s wider push to become carbon neutral by 2050. Chile’s energy ministry and the electricity power generators’ association have pledged to build no new coal power stations unless they are fitted with carbon capture technology.

Like Drax Group and the UK, companies and countries are quickly moving beyond unabated coal-fired power generation.

Europe’s kicking its coal habit

From Roman mines to the fuel behind the continent-wide industrial revolution, Europe has a long history with coal. But with reducing carbon and other greenhouse gas emissions, now firmly on the global agenda, Europe’s love for coal is rapidly declining.

Collectively, the EU aims for renewable sources to account for 20% of gross final energy consumption by 2020 and 27% by 2030. Countries in and outside the EU, as well as businesses and organisations, are setting ambitious targets to phase out coal as part of the UK and Canada-led Powering Past Coal Alliance, which Drax recently signed up to.

European CountriesCoal-free date
(according to Europe Beyond Coal *updated September 2020*)
Austria 🇦🇹 2020
France 🇫🇷 2022
Portugal 🇵🇹2023
UK 🇬🇧2024
Ireland 🇮🇪 Italy 🇮🇹 2025
Greece 🇬🇷2028
Finland 🇫🇮 Netherlands 🇳🇱 2029
Denmark 🇩🇰 Hungary 🇭🇺 Portugal 🇵🇹2030
Germany 🇩🇪2038
Czech Republic 🇨🇿 Spain 🇪🇸Phase out under discussion
Bosnia Herzegovina🇧🇦 Bulgaria 🇧🇬 Croatia 🇭🇷 Kosovo🇽🇰Montenegro 🇲🇪 Poland 🇵🇱 Romania🇷🇴Serbia🇷🇸 Slovakia 🇸🇰Slovenia 🇸🇮 Spain 🇪🇸 Turkey 🇹🇷No phase out date
Belgium 🇧🇪 Cyprus 🇨🇾 Estonia 🇪🇪 Iceland 🇮🇸 Latvia 🇱🇻 Lithuania 🇱🇹 Luxembourg 🇱🇺 Malta 🇲🇹 Norway 🇳🇴 Sweden 🇸🇪Switzerland 🇨🇭No coal in electricity mix

This movement is not only being fuelled by an increased capacity in wind and solar generation, but also by other low-carbon energy sources enabling countries to kick their coal habits.

Aiming for 100% renewable

As myth after myth is dispelled about renewables, there are countries proving it is possible to power a modern developed nation entirely through renewable energy sources.

Up in the northern-most reaches of Europe, Iceland already generates all its electricity from renewable sources. This is split between 75% hydropower and 25% geothermal power. Geothermal not only offers a renewable source of electricity but also hot water for heating the volcanic island nation.

A geothermal power station steams on a cold day in Iceland

Hydropower is also a key contributor to Norway’s renewable ambitions. With more than 31 gigawatts (GW) of installed hydropower capacity, Norway is able to rely on it as a source of electricity and export its plentiful oil and natural gas reserves to countries still dependent on fossil fuels.

Many parts of Europe are well suited to hydropower, with reliable rainfall and the mountainous topography necessary to construct dams and power stations. Parts of Austria, Romania and Georgia also make substantial use of hydropower as a source of electricity.

Artificial Lake behind the Bicaz Dam at sunset, Romania

For countries without this access to large-scale hydropower, it’s the increased installation of renewables that holds the key to eliminating the need for coal.

Growing renewable generation

Last year saw electricity generation from renewable sources overtake that from coal for the first time thanks to continuous expansion of wind, solar and biomass capacity around the continent.

Between 2010 and 2017, generation from wind, solar and biomass installations in EU countries more than doubled from 302 terawatt hours (TWh) to 670 TWh, according to Eurostat, driven primarily by an increase in wind capacity. As a source of renewable electricity wind has already proved capable of generating major portions of a country’s demand –managing to meet 44% of Denmark’s overall demand in 2017. This was after previously producing a 40% electricity surplus one day for the country, allowing it to export the emission-free electricity to neighbours.

Wind turbines on the east coast of Sweden

Across the EU, generation from wind more than doubled from 150 TWh to 364 TWh from 2010 to last year, while solar generation grew five times from 23 TWh to 119 TWh and biomass jumped from 129 TWh to 196 TWh. By contrast, coal and lignite fell from 818 TWh to 669 TWh.

These renewable electricity sources, along with hydropower, now account for 30% of EU countries’ collective electricity generation. And while coal generation continues to drop, other low carbon energy sources, particularly nuclear, still play essential roles in many European energy systems.

From coal to low carbon

Sweden is one of the leaders in renewable electricity generation, setting 2040 as the date to move to totally renewable energy. However, while it currently counts 6.5 GW of wind capacity installed and has already exceeded its 2020 renewable generation goals, the country’s 10 nuclear reactors still make up 40% of its electricity output. Sweden aims to phase-nuclear out of its energy mix, but this will force it to import more power from neighbours to meet demand.

France is even more dependent, with nuclear making up 75% of its electricity production and earning more than €3 billion a year for the country in exports. It aims to reduce its nuclear generation to 50% with president Emmanuel Macron claiming continued nuclear generation offers “the most carbon-free way to produce electricity with renewables.”

Fessenheim Nuclear and Hydroelectric Power Plants in Alsace, France

As a reliable and low-carbon source of electricity, the most modern nuclear power stations add a certain amount of flexibility to grids enabling greater adoption of intermittent renewable sources. Across the EU nuclear made up a quarter of electricity generation in 2017.

Gas in the transition

Much more flexible than nuclear, gas plays an essential role in many countries. It accounted for 19% of electricity generation in the EU last year and produces around half the CO2 and just one tenth of the air pollutants of coal. Gas turbines can begin generating electricity at full power in just 30 minutes from a cold start, or 10 minutes from warm standby, allowing it to plug any gaps in demand left by intermittent renewables. Its ability to provide many system services such as reserve power and frequency response will see it play an important transition role over the coming decades, until cleaner technologies are able to take over.

Artist’s impression of a Drax rapid-response gas power station (OCGT) with planning permission

Coal is not gone yet, making up 11% of EU’s electricity generation in 2017, but the momentum behind decarbonisation is keeping Europe on track to meet its ambitious emissions target and take the final step away from coal.

Going off grid: The companies generating their own energy

The residents of Cupertino, California are getting used to their new space-aged neighbour. In this Silicon Valley city, a sleek, doughnut-shaped flying saucer sits on a hillside, overlooking the population. But this is no extra-terrestrial. This is the new home of Cupertino’s most-famous inhabitant: Apple.

The so-called Apple Campus 2 ‘spaceship’ has caused a stir since it opened this year. With its abundance of trees, 100,000 square-foot wellness centre, revolutionary chairs and specially designed pizza boxes, it aims to be, as the late Steve Jobs declared it, “the best office building in the world.”

But there’s also something interesting going on outside the building where women and men think up the next iPhone. Around the 175-acre campus sits 805,000 square-feet of solar arrays. The 17 megawatts (MW) of solar panels on the spaceship’s roof and 4 MW of fuel cell storage will provide 75% of the building’s daytime electricity, with the rest coming from a nearby 130 MW solar farm.

The aim is to not only power operations with renewable energy, but to do so with self-generated renewable energy – and Apple aren’t alone in this endeavour.

Driven by a need to operate more cleanly and enabled by increasingly accessible renewable energy technologies, many companies are now pursuing their own energy independence. Could we soon see the first entirely off-grid multinational?

Going off grid

Think of IKEA and you might think of long afternoons wrestling woodwork and Allen keys – what you don’t think of is wind turbines. However, the Swedish retailer, which boasts 355 locations across 29 countries, recently saw the number of wind turbines it owns exceed the number of stores. By 2020 it aims to generate more renewable energy than it uses worldwide – something it’s already achieved in the Nordics and Canada.

IKEA isn’t the only retailer exploring innovative energy models. US shopping and leisure mall giants Target and Walmart, which count almost 7,000 locations between them, are also looking to self-generate renewable energy at mass scale.

Making use of the space available at their massive stores, the retailers are looking to rooftop solar systems to power their efforts to reach 100% renewable energy. At the end of last year Target was the US’ leading corporate solar installer with 147.5 MW of capacity, followed by Walmart with 145 MW.

Unsurprisingly, the tech industry is making a big push towards self-supply or sourcing power from 100% renewable generators. This is largely down to just how much electricity they use, particularly when it comes to things like data centres.

Estimated by some to become the largest users of electrical power on the planet by the 2020s, datacentres house hundreds of rows of servers that remotely store and process internet and mobile data from around the world. They are the physical footprint of our digital, cloud computing age and already they’re estimated to use roughly 3% of the global electricity supply.

One big user of datacentres — crypto currency Blockchain — is projected by 2020 to use about the same amount of power each year as Denmark.

Microsoft has tackled its datacentre demand by both developing in-house generation capabilities and by partnering with local utilities suppliers to source renewable energy for their centres. Not only does this make operations cleaner, but the independence can also increase the reliability of their power supplies, which are often backed up by batteries.

There are other obvious benefits for companies going energy-independent – one being the PR boost. But there is also a significant bottom line benefit, even for partly self-generating organisations. In the first half of 2017 Thames Water cut £12 million from its annual energy bills by producing 23% of its own electricity.

Biomass domes

While solar and wind made up part of this, the water management company generated much of the 146 GWh it produced through biogas made from its own sewage management facilities. The power it didn’t generate itself was sourced from Haven Power in the form of renewable biomass electricity.

What it means for the grid

The cynical view may be one that says energy independence is a further step towards entirely independent and unregulated multinationals, but there are signs it can benefit the wider population too.

Some self-generation operations can feed electricity back into the grid, serving as a backup resource at times of high demand. This idea of ‘prosuming’ (both producing and consuming electricity) is growing outside of big businesses in the residential space. With the rise of electric vehicles and their potential to store and feed power back to the grid, it is one likely to grow even further, and big companies are taking note.

Microsoft points to its Cheyenne, Wyoming-based data centre as an example of this. Local utility Black Hills Energy (which it has partnered with to source renewable power) has the ability to draw from the datacentre’s normally dormant backup generators in times of need.

In the UK, this is happening on a smaller scale. Hamerton Zoo Park, in Cambridgeshire, generates its own onsite wind, solar and biomass power, making it the most ‘environmentally friendly zoo in Europe’. Excess power not used on site is then sold back to the grid through Opus Energy, generating extra revenue for the zoo and contributing to overall grid supply.

Even with growing numbers of prosuming and energy-independent companies, however, there will still be a need for grid-stabilising services provided by large scale generators. Companies perform well when they focus on their core business. Partnering with energy suppliers to help them manage their electricity – including their self-generated power – can make sense. But what increasing levels of distributed renewable energy generation offers is the potential to reduce usage of fossil fuels at a countrywide level.

Coordinating the give and take of this energy across the entire system will take significant effort, but smart technologies and improving storage will help grids and energy-independent companies work together to make the whole system cleaner.

Giving up coal

Tony Juniper at Drax Power Station between coal stock and biomass wood pellet storage domes

Tony Juniper* is an environmental campaigner, author and director at Robertsbridge, a consultancy helping advise Drax on its sustainability programmes

Back in 2006 while working as Director at Friends of the Earth I approved a new report to be published in support of our then campaign for a new Climate Change Act. We wanted to show UK government ministers how it would indeed be possible to make cuts in emissions so that by 2050 the UK could progressively have reduced greenhouse gas pollution by 80 per cent compared with emissions in 1990. It was a radical and demanding agenda that we’d adopted and it was important to show the practical steps that could be made in achieving it.

The analysis we presented was based on an electricity sector model that we had developed. Different data and assumptions could be inputted and using this we set out six possible lower carbon futures.

In our best case scenario we foresaw how it would be feasible to slash emissions by about 70 per cent by 2030.

This was based on an ambitious energy efficiency programme and a shift away from fossil energy and toward renewables, including wind and solar power. In that renewables mix was also an important role for biomass to replace coal in the country’s largest power station – Drax.

This was not only crucial for backing up intermittent renewable sources but also a key piece in a future electricity sector that we believed should avoid the construction of new nuclear power stations. In November 2008 our campaign succeeded and the UK was the first country in the world to adopt a new national law for the science-based reduction of greenhouse gas emissions. Since then I’ve been working as an independent sustainability advisor, including with the advisory group Robertsbridge, of which I was a co-founder.

My work has included assisting various companies in meeting the targets set out in that new law. For example, I was the Chair of the industry campaign Action for Renewables which sought government and public support for the large-scale expansion of wind, tidal and wave power.

Different campaigners tried to stop the expansion of these renewable sources of electricity, however, and succeeded in derailing support for on-shore wind power developments.

Although in its infancy, concerns were also raised about proposals for different kinds of tidal power.

In the years after the Climate Change Act I was encouraged to see that Drax began to switch over to wood pellets to generate power but concerned to see that this too had come under attack. The broadly agreed view that sustainable biomass could have a role in the phase out of coal had gone, and in its place were claims  that it was actually worse than burning coal. It was against this backdrop of changed perspectives that myself and Robertsbridge colleagues were pleased to be invited to help Drax in devising a new sustainability plan.

Early on in our conversations with Drax it became clear that part of the challenge with biomass — deciding the extent to which it is a rational choice to help with the process of decarbonisation, is how the answer to that touches so many different issues.

For example, when it comes to the exit from coal, cleaner alternatives must be brought forward to replace it, including wind and solar power.

But although these sources of renewable energy are growing rapidly, they still come with their own challenges, especially because wind can’t generate on still days and solar ceases at night. This intermittency raises issues about what the best electricity storage or complementary clean power sources might be to back them up when needed.

There are important questions about the best sources of biomass and the extent to which long-distance transport of that fuel is desirable. On top of that are issues linked with the management of the forests from which the raw material is sourced, and whether the extraction of wood to generate power can be compatible with carbon neutrality. There is the matter of nature conservation and the extent to which wood fuel demand will affect the status of species and habitats of conservation concern. For example, to what extent might the wood pellet industry be driving the conversion of semi-natural woodlands to plantations?

All of this is bound up with the economic and social conditions prevailing in the landscapes from which the wood is derived and the extent to which those buying wood fuel can pursue positive outcomes for the environment, even when carbon and wildlife are at best of marginal concern to the local forest owners growing the wood.

Then there is the extent to which economic incentives might be linked with the carbon stocks held in the forest. For example, strong demand for wood is held to be the main reason why since the 1950s the volume of carbon stored in standing timber in the forests of the US South has increased by over 100%.

Demand for wood might seem counter-intuitive as a positive factor in maintaining tree cover, but in the US South it has been a big part of the picture.

On top of all this is the question of what would happen if there were no demand for wood fuel. In landscapes that have seen volatility in demand arising from the decline in newsprint in favour of digital devices and the slowdown in US house building following the 2008 financial crisis, this is not easy to answer.

Although seeking answers is a complex task, our advice to Drax was that it should work with its many stakeholders in finding the best possible fit between its business planning and these and other questions.

One way of doing that would be to set out the different issues in an accessible manner and hence the production of the film that can be seen here.

It’s called ‘The biomass sustainability story And while most of us can agree with the basic idea that we have to stop burning coal, it seems the big questions are about what might be the best ways to do it? Might biomass have a role? I believe it does.

Have a look at the film and see what you think, especially if you feel as though you’ve already made up your mind.