Tag: decarbonisation

A net zero UK will be good for people and the planet

Peak district walker

For the UK to reach net zero CO2 emissions by 2050 and do its part in tackling the biggest challenge of our time, all sectors of the economy must reduce their emissions and do it quickly.

I believe the best approach to tackling climate change is through ‘co-benefit’ solutions: solutions that not only have a positive environmental impact, but that are economically progressive for society today and in the future through training, skills and job creation.

As an energy company, this task is especially important for Drax. We have a responsibility to future generations to innovate and use our engineering skills to deliver power that’s renewable, sustainable and that doesn’t come at a cost to the environment.

Our work on Zero Carbon Humber, in partnership with 11 other forward-thinking organisations, aims to deploy the negative emissions technology BECCS (bioenergy with carbon capture and storage), as well as CCUS (carbon capture, usage and storage) in industry and power, and ramp up hydrogen production as a low carbon fuel. These are all essential technologies in bringing the UK to net zero, but they are also innovative projects at scale that can benefit society and the lives of people in the Humber, and around the UK.

New jobs in a new sector

The Humber region has a proud history in heavy industries. What began as a thriving ship building hub has evolved to include chemicals, refining and steel manufacturing. However, these emissions-intensive industries have grown increasingly expensive to operate and many have left for countries where they can be run cheaper, leading to a decline in the Humber region.

If they are not decarbonised, these industries will face an even greater cost. By 2040, emitters could face billions of pounds per year in carbon taxes, making them less competitive and less attractive for international investment.

Deploying carbon capture and hydrogen are essential steps towards modernising these businesses and protecting up to 55,000 manufacturing and engineering jobs in the region.

Capturing carbon at Drax: Delivering jobs, clean growth and levelling up the Humber. Click to view executive summary and case studies from Vivid Economics report for Drax.

A report by Vivid Economics commissioned by Drax, found that carbon capture and hydrogen in the Humber could create and support almost 48,000 new jobs at the peak of the construction period in 2027 and provide thousands of long term, skilled jobs in the following decades.

As well as protecting people’s livelihoods, decarbonisation is also a matter of public health. In the Humber alone, higher air quality could save £148 million in avoided public health costs between 2040 and 2050.

I believe the UK is well position to rise to the challenge and lead the world in decarbonisation technology. There is a clear opportunity to export knowledge and skills to other countries embarking on their own decarbonisation journeys. BECCS alone could create many more jobs related to exporting the technology and operational know-how and deliver additional value for the economy. As interest in negative emissions grows around the world, the UK needs to move quickly to secure a competitive advantage.

A fairer economy

This is in many ways the start of a new sector in our economy – one that can offer new employment, earnings and economic growth. It comes at just the right time. Without intervention to spur a green recovery, the COVID-19 crisis risks subjecting long-term economic damage.

Being at the beginning of the industrial decarbonisation journey means we also have the power to shape this new industry in a way that spreads the benefits across the whole of the UK.

We’ve previously seen sector deals struck between the government and industry include equality measures. For example, the nuclear industry aims to count women as 40% of its employees by 2030, while offshore wind is committed to sourcing 60% of its supply chain from the UK.

Wind turbines at Bridlington, East Yorkshire

At present, the Humber region receives among the lowest levels of government investment in research and development in the UK, contributing to a pronounced skills gap among the workforce. In addition, almost 60% of construction workers across the wider Yorkshire and Humber region were furloughed as of August 2020.

A project such as Zero Carbon Humber could address this regional imbalance and offer skilled, long term jobs to local communities. That’s why I welcome the Prime Minister’s announcement of £1bn investment to support the establishment of CCUS in the Humber and other ‘SuperPlaces’ around the UK.

As the Government’s Ten Point Plan says, CCUS can ‘help decarbonise our most challenging sectors, provide low carbon power and a pathway to negative emissions’. 

Healthier forests

The co-benefits of BECCS extend beyond our communities in the UK. We aim to become carbon negative by 2030 by removing our CO2 emissions from the atmosphere and abating emissions that might still exist on the UK’s path to net zero.

Background. Fir tree branch with dew drops on a blurred background of sunlight

This ambition will only be realised if the biomass we use continues to be sourced from sustainable forests that positively benefit the environment and the communities in which we and our suppliers operate.

Engineer working in turbine hall, Drax Power Station, North Yorkshire

Engineer working in turbine hall, Drax Power Station, North Yorkshire

I believe we must continuously improve our sustainability policy and seek to update it as new findings come to light. We can help ensure the UK’s biomass sourcing is led by the latest science, best practice and transparency, supporting healthy, biodiverse forests around the world; and even apply it internationally.

Global leadership

Delivering deep decarbonisation for the UK will require collaboration from industries, government and society. What we can achieve through large-scale projects like Zero Carbon Humber is more than just the vital issue of reduced emissions. It is also about creating jobs, protecting health and improving livelihoods.

These are more than just benefits, they are the makings of a future filled with opportunity for the Humber and for the UK’s Green Industrial Revolution.

By implementing the Ten Point Plan and publishing its National Determined Contributions (NDCs) ahead of COP26 in Glasgow next year, the UK continues to be an example to the world on climate action.

New ESG RCF and Financing Update

Landscape of trees in autumn Where: Cruachan Power Station, Scotland
RNS Number: 8002F
Drax Group PLC (Symbol: DRX)

Drax is pleased to announce that it has completed the refinancing of its revolving credit facility.

The new £300 million facility (“the Facility”) matures in 2025, with an option to extend by one year(1). The Facility replaces the current RCF which matures in 2021 and provides increased liquidity, enabling the full facility to be drawn as cash (the previous facility restricted cash drawn to support liquidity to £165 million). The Facility is currently undrawn for cash.

The Facility has a customary margin grid referenced over LIBOR, which reflects a small reduction in cost versus the current RCF and includes an embedded ESG component which adjusts the margin based on Drax’s carbon intensity measured against an annual benchmark.

Drax has also agreed a change to the Group’s £35 million term-loan facility, maturing in 2022, in order to simplify its capital structure. This facility will now rank as senior, previously super senior.

Drawing of previously agreed infrastructure facility

On 14 September 2020, Drax confirmed that it had agreed a new infrastructure term-loan agreement (the “Agreement”) that provided committed facilities of approximately £160 million with a range of maturities between 2024 and 2030(2). These facilities extended the Group’s maturity profile while also reducing the cost of debt. Drax has now drawn £28 million(2), with the balance to be drawn by February 2021.

The Agreement also included an option for a further £75 million. Under this option Drax has now agreed £53 million maturing in 2028, which will be drawn in December 2020.

Proceeds from Euro denominated bond issue and utilisation

On 4 November 2020, Drax issued €250 million of Euro denominated senior secured notes which mature in 2025. The effective Sterling-equivalent interest rate is 3.24% per annum.

The proceeds from this issuance, along with existing cash flows, are being used to redeem the Group’s £350 million 2022 Sterling bond and £125 million ESG term-loan facility.

The notes extend the Group’s debt maturity profile and reduce the overall cost of debt to approximately 3.7%.

Summary of Group debt structure at 19 November 2020

InstrumentMaturityDescription
Infrastructure facilities (2019)2024-2029£375m
Infrastructure facilities (Sept 2020)2024-2030approx.£160m (2) (£28m (2) drawn)
Infrastructure facilities (Nov 2020)2028£53m
Bonds2025$500m
Bonds2025€250m
RCF2025£300m (undrawn for cash)
Index-linked term-loan2022£35m

Enquiries:

Drax Investor Relations: Mark Strafford

+44 (0) 7730 763 949

Media:

Drax External Communications: Selina Williams

+44 (0) 7912 230 393

Website: www.drax.com

END

Jobs, skills, zero emissions – the economic need for carbon capture by Drax

Engineer working inside Drax Power Station

The Humber Estuary is one of the most distinctive features of the UK’s eastern coastline. Viewed from above, it is a crack in the land where the North Sea merges with England – it’s this connection to the sea that has defined it as a region and led to its rich industrial history.

But in recent years, as sectors such as heavy manufacturing move overseas, the Humber has begun to sink into economic decline. These challenges are now being exacerbated by COVID-19 – almost 60% of workers in the Yorkshire and the Humber construction industry were furloughed in August 2020.

Stimulation is needed to rejuvenate the Humber and prevent lasting economic scars on the region and its working-age population. Decarbonisation offers the opportunity to rebuild the region for the 2020s and decades ahead.

Technologies that have been identified as essential for the UK to reach its legally-binding commitment of net zero greenhouse gas emissions by 2050 include:

  • Carbon capture usage and storage (CCUS) – trapping, transporting and storing or recycling carbon dioxide (CO2) from industrial processes and energy generation
  • Bioenergy with carbon capture and storage (BECCS) – carbon removal from renewable, sustainable biomass power generation that leads to negative emissions
  • Hydrogen production – switching processes from natural gas to this zero-emissions fuel

Engineer working inside power stationThe Humber has unique capabilities that positions it as a hub for developing all three.

Zero Carbon Humber (ZCH), the partnership between a number of leading companies (including Drax), aims to bring together these essential technologies and create the foundations from which the region’s emissions-heavy industries can regain their competitive edge, create jobs and rejuvenate the area.

A new report by Vivid Economics for Drax investigates the potential economic impact of carbon capture and hydrogen. It concluded that nearly 48,000 jobs could be created and supported in the industrial cluster at the peak of the construction phase in 2027.

It’s a chance to not just revitalise a powerhouse of Northern England, but to collaborate with other industrial clusters and build a UK-wide green economy ready to export globally and attract international business to the region.

Rejuvenating the Humber

The North Sea has helped forge Hull’s strong industrial heritage of ship building and fishing. In the 1950s the flat lands of the south bank enabled post-war industries such as refining chemicals and steel to thrive.

“The region’s economy is built around the ports and accessibility to Europe and the North Sea,” explains Pauline Wade, Director of International Trade at the Hull and Humber Chamber of Commerce. “They are the biggest ports in the UK in terms of tonnage, and the energy and chemical industries hinge on materials coming in and going out of them.”

But these are also emissions-intensive industries, and as a result the Humber has the highest CO2 emissions of any UK industrial region – emitting 30% more than the second largest industrial cluster. Decarbonisation is vital in modernising and protecting these sectors, and the 55,000 manufacturing jobs they support.

River Humber Sunset

“Decarbonisation brings opportunities. Many businesses in this region have that target very firmly set in their business plans,” says Beckie Hart, Regional Director of the Yorkshire and the Humber CBI (Confederation of British Industry). “Many are high polluters – they know that, but they are very keen to became part of the solution.”

Developing BECCS, CCUS and hydrogen, as well as building the infrastructure needed to capture and transport CO2, offers both immediate construction jobs and long-term skilled jobs.

The main construction period of the project would run from 2024 to 2031 and support up to 47,800 new jobs at its peak in 2027, when £3.1 billion a year would be added to the regional economy. These include up to 25,200 high quality jobs in construction and operations, as well as a further 24,400 supported across the supply chain and wider economy.

These construction roles include jobs such as welders, pipe fitters, machine installers and technicians – with immediate government backing, these jobs could be available in as little as four years. Ongoing operations will also create 3,300 long term, skilled jobs in the cluster in the early 2030s.

The supply chain needed to provide the materials and parts for the region’s industrial revitalisation will also support further indirect jobs. In fact, businesses of all kinds stand to benefit – the increased spending by workers also could support further jobs across businesses ranging from cafes to professional services. These indirect jobs go on to induce further employment and spending out across more of the economy.

Overall the report suggests an annual average of more than 7,000 indirect and around 10,800 induced jobs could be supported during the construction phase, with £452 million in indirect and £581 million in induced value added to the wider economy annually on average.

However, transformation is costly and today the Humber region receives among the lowest levels of government investment in research and development in the UK. This has contributed to a pronounced skills gap in the region, as opportunities decline, and more people fall out of the workforce.

Bridging the skills gap in the Humber

Projects such as ZCH depend on availability of skilled workforces to build and operate the next generation of energy technologies. However, the Humber currently has a low proportion of school leavers with the right qualifications to take on roles with specialist technical and practical skills.

This skills gap is only expected to get worse. The Government’s Working Futures model forecasts that from 2022 key sectors such as electricity and gas, engineering and construction in the region will require higher qualifications than are currently available in the local labour market.

The skills gap is also compounded by COVID-19. As it creates economic uncertainty it pushes more people out of work and further reduces skills in the workforce. This has a particularly pronounced impact on young people who are less established in careers, threatening to create a ‘COVID-Generation’ that feel discouraged and detached from the labour market.

But this is not an inevitability.

With the right intervention from government and business, the Humber’s workforce can be upskilled and drive a green recovery.

A number of different approaches are possible: apprenticeships have historically proved a valuable means of training the next generation of workers. Companies and schools should work together to highlight the opportunities of vocational training to school leavers.

“Universities and colleges must work a lot more closely with the businesses in the region to have an honest conversation about what they need,” explains Hart. “A good example is the Ron Dearing University Technical College. It’s a business-led college that has only been open about 18 months but has had great results from the students because they offer specific courses that the region’s employers actually need.”

Engineer within Drax Power Station

For older generations of workers who have been out of the labour force for extended periods of time ‘skills vouchers’ are a timely intervention. These work by offering grants to cover the cost of flexibly retraining, meaning long-term unemployed workers of any age can ease back into new types of jobs.

Training local people for the future is key to decarbonising the Humber and creating jobs, as well as protecting industries. But a net zero industrial cluster could also have an impact beyond just the Humber.

Carbon removal in Yorkshire and the Humber

The Committee on Climate Change (CCC) has made it clear that for the UK to reach net zero by 2050 CCUS and negative emissions from BECCS are essential, as is hydrogen as a zero-carbon source of fuel. These will be needed at scale across the UK, and in the Humber. They are already underway.

Engineer at BECCS pilot project within Drax Power Station

Engineer at BECCS pilot project within Drax Power Station

Drax Power Station is piloting BECCS technology and has proven it can deliver negative emissions. Generating electricity using biomass from sustainably managed forests that absorb CO2 is a carbon neutral process. As part of the power generation process, adding CCUS and capturing the CO2 emitted, storing it permanently under the North Sea turns the process into a carbon negative one.

Deploying BECCS across four of Drax’s generating units would support 10,304 jobs and create £673 million in value at the peak of the construction phase. When operations get underway as early as 2027, 750 permanent operations and maintenance jobs could be created. Drax aims to operate as a carbon negative power station by 2030.

Of the 10,491 jobs supported by deploying BECCS (10,300 at the peak), 6,367 of these would be within the project’s supply chain and wider economy (9,073 in 2028).

Such supply chains needed across the North of England offer further potential to establish Yorkshire and the Humber as a hub for decarbonisation technology.

Facilities such as an Advanced Manufacturing Research Centre (AMRC) have been proven to make regions of the UK more competitive locations for advanced industries. By bringing together business with universities, they can focus on sector-specific challenges for technical industries. By creating a manufacturing hub dedicated to research and innovation in a specific industry, AMRCs also encourage ‘crowing-in investments.’ This is when private sectors investments enter into a region in the wake of government spending.

A zero carbon technology-focused AMRC in the Humber would also position the region to offer decarbonisation skills and products to other industrial clusters in the UK and further afield.

From the Humber to the world

Up the north coast from the Humber is Net Zero Teesside, a neighbouring industrial cluster with its own aims for decarbonisation. Through collaboration with clusters such as this, ZCH can offer even wider reaching benefits and enable UK-wide carbon capture, negative emissions and hydrogen.

However, for the entire UK to reach net zero, clusters all across the country must decarbonise – the report suggests as much as 190 million tonnes (Mt) CO2 could be captured and stored every year across the country.

Beyond just the clusters themselves 193,000 jobs could be created at the peak for UK deployment in 2039. These jobs would add £13.9 billion in value to the economy.

Under the Humber Bridge

Building a strong zero carbon economy based around the combined strengths of BECCS, CCUS and hydrogen can provide the UK with a world-leading export. At a time when countries across the globe all face the same decarbonisation challenges, successfully building clusters like ZCH will allow the UK to export knowledge, skilled labour, technology and services around the world.

“As a port city, Hull has always had an international influence. The chamber of commerce was set up in 1837 by the merchant adventurers who were seafaring traders. That history is inbuilt into the local DNA,” says Wade. “Today, we’re trying to create the environment for international companies to invest and locate in the Humber.”

It serves as a further example of how investing decisively in projects such as Carbon Capture by Drax and CCUS and hydrogen clusters such as Zero Carbon Humber today will bring long term economic benefits, taking the UK from a green recovery to a world-leading green industrial powerhouse.

“The Humber has evolved from the fishing industry to a generator of high-emissions products like steel, chemicals and power,” explains Hart. “Now it is keen to be the clean corner and teach everyone else how to decarbonise. There is a single vision of where we want to go and how they want to get there jointly.”

Read the full report (PDF), executive summary and press release.

COP26: Will countries with the boldest climate policies reach their targets?

To tackle the climate crisis, global unity and collaboration are needed. This was in part the thinking behind the Paris Agreement. It set a clear, collective target negotiated at the 2015 United Nations Climate Change Conference and signed the following year: to keep the increase in global average temperatures to well below 2 degrees Celsius above pre-industrial levels.

In November 2021, COP26 will see many of the countries who first signed the Paris Agreement come together in Glasgow for the first ‘global stocktake’ of their environmental progress since its creation.

COP26 will take place at the SEC in Glasgow

Already delayed for a year as a result of the pandemic, COVID-19 and its effects on emissions is likely to be a key talking point. So too will progress towards not just the Paris Agreement goals but those of individual countries. Known as ‘National Determined Contributions’ (NDCs), these sit under the umbrella of the Paris Agreement goals and set out individual targets for individual countries.

With many countries still reeling from the effects of COVID-19, the question is: which countries are actually on track to meet them?

What are the goals?

The NDCs of each country represent its efforts and goals to reduce national emissions and adapt to the impacts of climate change. These incorporate various targets, from decarbonisation and forestry to coastal preservation and financial aims.

While all countries need to reduce emissions to meet the Paris Agreement targets, not all have an equally sized task. The principle of differentiated responsibility acknowledges that countries have varying levels of emissions, capabilities and economic conditions.

The Universal Ecological Fund outlined the emissions breakdown of the top four emitters, showing that combined, they account for 56% of global greenhouse gas emissions. China is the largest emitter, responsible for 26.8%, followed by the US which contributes 13.1%. The European Union and its 28 member states account for nine per cent, while India is responsible for seven per cent of all emissions.

These nations have ambitious emissions goals, but are they on track to meet them?

China

Traffic jams in the rush hour in Shanghai Downtown, contribute to high emissions in China.

By 2030, China pledged to reach peak carbon dioxide (CO2), increase its non-fossil fuel share of energy supply to 20% and reduce the carbon intensity – the ratio between emissions of CO2 to the output of the economy – by 60% to 65% below 2005 levels.

COVID-19 has increased the uncertainty of the course of China’s emissions. Some projections show that emissions are likely to grow in the short term, before peaking and levelling out sometime between 2021 and 2025. However, according to the Climate Action Tracker it is also possible that China’s emissions have already peaked – specifically in 2019. China is expected to meet its non-fossil energy supply and carbon intensity pledges.

United States

The forecast for the second largest emitter, the US, has also been affected by the pandemic. Economic firm Rhodium Group has predicted that the US could see its emissions drop between 20% and 27% by 2025, meeting its target of reducing emissions by 26% to 28% below 2005 levels.

However, President Trump’s rolling back of Obama-era climate policies and regulations, his support of fossil fuels and withdrawal from the Paris Agreement (effective from as early as 4 November 2020), suggest any achievement may not be long-lasting.

The United States’ Coronavirus Aid, Relief, and Economic Security Act, known as the CARES Act, does not include any direct support to clean energy development – something that could also change in 2021.

European Union

CCUS Incubation Unit, Drax Power Station

Carl Clayton, Head of BECCS at Drax, inspects pipework in the CCUS area of Drax Power Station

The European Union and its member states, then including the UK, pledged to reduce emissions by at least 40% below 1990 levels by 2030 – a target the Climate Action Tracker estimates will be achieved. In fact, the EU is on track to cut emissions by 58% by 2030.

This progress is in part a result of a large package of measures adopted in 2018. These accelerated the emissions reductions, including national coal phase-out plans, increasing renewable energy and energy efficiency. The package also introduced legally binding annual emission limits for each member state within which they can set individual targets to meet the common goal.

The UK has not yet released an updated, independent NDC. However, it has announced a £350 million package designed to cut emissions in heavy industry and drive economic recovery from COVID-19. This includes £139 million earmarked to scale up hydrogen production, as well as carbon capture and storage (CCS) technology, such as bioenergy with carbon capture (BECCS) – essential technologies in achieving net zero emissions by 2050 and protecting industrial regions.

India

India, the fourth largest global emitter, is set to meet its pledge to reduce its emissions intensity by 33% to 35% below 2005 levels and increase the non-fossil share of power generation to 40% by 2030. What’s more, the Central Electricity Agency has reported that 64% of India’s power could come from non-fossil fuel sources by 2030.

Wind turbines in Jaisalmer, Rajasthan, India

Along with increasingly renewable generation, the implementation of India’s National Smart Grid Mission aims to modernise and improve the efficiency of the country’s energy system.

It is promising that the world’s four largest emitters have plans in place and are making progress towards their decarbonisation goals. However, tackling climate change requires action from around the entire globe. In addition to NDCs, many countries have committed to, or have submitted statements of intent, to achieve net zero carbon emissions in the coming years.

Net zero target

CountryTarget Date Status
Bhutan 🇧🇹Currently carbon negative (and aiming for carbon neutrality as it develops; pledged towards the Paris Agreement)
Suriname 🇸🇷Currently carbon negative
Denmark 🇩🇰2050In law
France 🇫🇷2050In law
Germany 🇩🇪2050In law
Hungary 🇭🇺2050In law
New Zealand 🇳🇿2050In law
Scotland 🏴󠁧󠁢󠁳󠁣󠁴󠁿2045In law
Sweden 🇸🇪2045In law
United Kingdom 🇬🇧2050In law
Bulgaria 🇧🇬2050Policy Position
Canada 🇨🇦2050Policy Position
Chile 🇨🇱2050In policy
China 🇨🇳2060Statement of intent
Costa Rica 🇨🇷2050Submitted to the UN
EU 🇪🇺2050Submitted to the UN
Fiji 🇫🇯2050Submitted to the UN
Finland 🇫🇮2035Coalition agreement
Iceland 🇮🇸2040Policy Position
Ireland 🇮🇪2050Coalition Agreement
Japan 🇯🇵2050Policy Position
Marshall Islands 🇲🇭2050Pledged towards the Paris Agreement
Netherlands 🇳🇱2050Policy Position
Norway 🇳🇴2050 in law, 2030 signal of intent
Portugal 🇵🇹2050Policy Position
Singapore 🇸🇬As soon as viable in the second half of the centurySubmitted to the UN
Slovakia 🇸🇰2050Policy Position
South Africa 🇿🇦2050Policy Position
South Korea 🇰🇷2050Policy Position
Spain 🇪🇸2050Draft Law
Switzerland 🇨🇭2050Policy Position
Uruguay 🇺🇾2030Contribution to the Paris Agreement

While the COVID-19 pandemic has disrupted short-term plans, many see it as an opportunity to rejuvenate economies with sustainability in mind. COP26, as well as the global climate summit planned for December of this year, will likely see many countries lay out decarbonisation goals that benefit both people’s lives and the planet.

Building back better by supporting negative emissions technologies

CCUS Incubation Unit, Drax Power Station
Rt Hon Rishi Sunak MP, Chancellor of the Exchequer
Rt Hon Alok Sharma MP, Secretary of State for Business, Energy & Industrial Strategy
Rt Hon George Eustice MP, Secretary of State for Environment, Food & Rural Affairs
Rt Hon Grant Shapps MP, Secretary of State for Transport
Rt Hon Michael Gove MP, Chancellor of the Duchy of Lancaster

Dear Chancellor, Secretaries of State,

Building back better by supporting negative emissions technologies

Today our organisations have launched a new coalition with a shared vision: to build back better as part of a sustainable and resilient recovery from Covid-19, by developing pioneering projects that can remove carbon dioxide (CO2) and other pollutants from the atmosphere. Together, we represent hundreds of thousands of workers across some of the UK’s most critical industries, including aviation, energy and farming, each of which contribute billions of pounds each year to the economy.

A growing number of independent experts, including the Committee on Climate Change, Royal Society and Royal Academy of Engineering and the Electricity System Operator, have recognised the crucial role of ‘negative emissions’ or ‘greenhouse gas removal’ technologies in fighting the climate crisis. Whilst we should seek to decarbonise sectors such as aviation, heavy industry and agriculture as far as practically possible, due to technical or commercial barriers it is unlikely we will eliminate their greenhouse gas emissions completely. Negative emissions technologies are critical therefore to balancing out these residual emissions and ensuring we achieve Net Zero in a credible, cost effective and sustainable way.

As well as benefiting the environment, negative emissions technologies and projects can build back a cleaner, greener economy in the wake of Covid-19. The foundations for this are already being laid by our coalition’s members today.

For example:

  • The National Farmers Union has set out a Net Zero vision for the agricultural sector whereby UK farmers harness the ability to capture carbon to create new income streams.
  • The aviation industry through the Sustainable Aviation initiative has identified negative emissions projects, alongside other measures as sustainable jet fuel, as being crucial to greening the industry.
  • In North Yorkshire, Drax is developing plans to combine sustainable biomass with carbon capture technology (BECCS) to create the world’s first carbon negative power station – supporting thousands of jobs in the process.
  • In North East Lincolnshire, Velocys with the support of British Airways is developing the Altalto waste-to-jet fuel project that could produce negative-emission jet fuel once the Humber industrial cluster’s carbon capture and storage infrastructure is established.
  • Finally, Carbon Engineering has announced a partnership with Pale Blue Dot Energy to deploy commercial-scale Direct Air Capture projects in the UK that would remove significant volumes of carbon dioxide from the atmosphere.

With COP26 fast approaching, there is a real and compelling opportunity for the UK Government to demonstrate to the world it is taking a leadership position on negative emissions. Conversely if the UK does not act quickly, it could jeopardise the delivery of projects in the 2020s that can support innovation, learning by doing and the scale-up of negative emissions in the 2030s. It also risks Britain falling behind in the race to scale and commercialise these technologies, with a view to exporting them to other countries around the world to support their own decarbonisation efforts.

We therefore call on this Government, supported by your departments, to pursue the following ‘low regrets’ interventions to support this critical emerging industry:

  1. Adopt a clear, unambiguous commitment to supporting negative emissions in the 2020s and beyond. The last significant reference to negative emissions by Government was in the 2017 Clean Growth Strategy. Between now and the end of the year there is a window of opportunity for the Government to go further, reflecting the changed reality of a Net Zero world and the growing consensus on the need for negative emissions. A clear signal of intent would also give greater confidence to investors and developers in negative emissions projects, in the absence of a long-term strategy.
  2. Develop targeted policies to support viable negative emissions projects in the 2020s. In order to scale up in the 2030s at a pace compatible with the UK’s climate commitments, it is essential that Government works with industry to bring forward early projects in the 2020s that are viable and represent value for money. However, there is no marketplace or regulatory regime in the UK today that incentivises or rewards negative emissions, making financing projects extremely challenging. Dedicated policy frameworks and business models for solutions such as afforestation, BECCS and Direct Air Capture are therefore urgently needed.
  3. Seize the opportunity to make negative emissions a point of emphasis at COP26. The UK has already led the way at a global level by adopting Net Zero as a legally binding target. At COP26, the UK can showcase its further commitment to continuous innovation around the decarbonisation agenda by signposting the early actions it has taken to deploy negative emissions – which other countries will also need to meet their own zero carbon ambitions. This statement would be particularly powerful as it can be credibly supported by several pioneering projects already being undertaken by British businesses and research organisations in this space.

We would welcome the opportunity to meet with each of you to discuss these points in further detail.

Yours,

The Coalition for Negative Emissions

carbon engineering logo carbon removal centre cbi logo
CCSA logo climeworks logo drax logo
energy uk logo heathrow logo iag logo
nfu logo velocys logo

View/download the letter as a PDF

What is carbon dioxide?

What is CO2?

Carbon dioxide (or CO2) is a colourless and odourless naturally occurring gas in the earth’s atmosphere which is made up of one carbon atom and two oxygen atoms.  As a greenhouse gas (GHG), it traps heat, making sure the planet isn’t uninhabitably cold. However, fast rising levels of CO2 and other long-lasting GHGs in the atmosphere are currently causing global warming to occur at an alarmingly rapid rate.

What is the carbon cycle?

Carbon is the basis of all life on earth – it is a key ingredient in almost everything on the planet. As the earth has a closed atmosphere, there has always been the same amount of carbon on the earth, but it is in a constant state of change, transitioning from gas to solid to liquid and moving between the atmosphere and the earth. This process is called the carbon cycle, and it is key to ensuring the earth is capable of sustaining life. CO2 forms one part of this process and makes up the largest available source of carbon on earth.

How is CO2 made?

Carbon is stored in oceans, soil, and living things and is released from this storage into the atmosphere in the form of CO2. CO2 is created when one carbon atom meets two oxygen atoms, which join together through a number of processes, including the decay of organic matter, the combustion of materials such as wood, coal and natural gas, through the breathing of humans and animals, and from events such as volcanic eruptions.

How does CO2 affect the planet?

An abundance of CO2 in the earth’s atmosphere means more heat gets trapped, which in turn contributes to a rise in global temperatures and climate change. This acceleration in carbon entering the atmosphere began during the Industrial Revolution around the 1800s, when fossil fuels were mined and burned to create energy, which released long-stored carbon into the atmosphere in the form of CO2.

From the beginning of the Industrial Revolution until today, the amount of carbon in the atmosphere has increased from 280 parts per million, to 387 parts per million, which constitutes a 39% increase. Today, CO2 levels are the highest they’ve been in 800,000 years.

CO2 is created when one carbon atom meets two oxygen atoms, which join together when organic materials containing carbon are burned: wood, coal, and natural gas.

How can countries reduce CO2 in the atmosphere?

According to the Paris Climate Agreement, nations must work to limit warming of the globe to be well under two degrees Celsius above pre-industrial levels. In the first half of 2015, the earth registered a one degree Celsius rise in global temperatures above pre-industrial levels, which means drastic and meaningful action must be taken to decarbonise within the next few years.

There are many ways to reduce the earth’s carbon footprint, including reforestation and using alternative ways to generate energy that don’t rely on fossil fuels. For example, wind, solar, biomass and hydro can all provide sustainable, carbon-neutral and low carbon sources of electricity.

Technology such as carbon capture and storage (CCS) can capture carbon permanently storing CO2 from industries in which some CO2 emissions remain. By combining CCUS with biomass energy (bioenergy with carbon capture and storage, or BECCS) it is even possible to generate negative emissions, where more CO2 is removed from the atmosphere than is emitted.

CO2 fast facts

  • In the 1960s, the growth of CO2 occurred at 0.6 parts per million per year. In the last 10 years, the rate has been 2.3 parts per million per year
  • The average human breathes out 93 kilograms of CO2 per year – however, our breathing only contributes 0.65 billion tonnes of carbon returned to the atmosphere, which is 0.01% of the amount released by fossil fuels each year
  • Trees absorb CO2 in the atmosphere and release it in the form of oxygen, making them vitally important in the world’s fight against climate change. In the US alone, forests absorb 13% of the nation’s carbon output

There are many ways to reduce the earth’s carbon footprint, including using alternative ways to generate power.

Go deeper

 

How to count carbon emissions

Reduced demand, boosted renewables, and the near-total abandonment of coal pushed last quarter’s carbon emissions from electricity generation below 10 million tonnes.

Emissions are at their lowest in modern times, having fallen by three-quarters compared to the same period ten years ago.  The average carbon emissions fell to a new low of 153 grams per kWh of electricity consumed over the quarter.

The carbon intensity also plummeted to a new low of just 18 g/kWh in the middle of the Spring Bank Holiday.  Clear skies with a strong breeze meant wind and solar power dominated the generation mix.

Together, nuclear and renewables produced 90% of Britain’s electricity, leaving just 2.8 GW to come from fossil fuels.

The generation mix over the Spring Bank Holiday weekend, highlighting the mix on the Sunday afternoon with the lowest carbon intensity on record

National Grid and other grid-monitoring websites reported the carbon intensity as being 46 g/kWh at that time.  That was still a record low, but very different from the Electric Insights numbers.  So why the discrepancy?

These sites report the carbon intensity of electricity generation, as opposed to consumption.  Not all the electricity we consume is generated in Britain, and not all the electricity generated in Britain is consumed here.

Should the emissions from power stations in the Netherlands ‘count’ towards our carbon footprint, if they are generating power consumed in our homes?  Earth’s atmosphere would say yes, as unlike air pollutants which affect our cities, CO2 has the same effect on global warming regardless of where it is produced.

On that Bank Holiday afternoon, Britain was importing 2 GW of electricity from France and Belgium, which are mostly powered by low-carbon nuclear.  We were exporting three-quarters of this (1.5 GW) to the Netherlands and Ireland.  While they do have sizeable shares of renewables, they also rely on coal power.

Britain’s exports prevented more fossil fuels from being burnt, whereas the imports did not as they came predominantly from clean sources.  So, the average unit of electricity we were consuming at that point in time was cleaner than the proportion of it that was generated within our borders.  We estimate that 1190 tonnes of CO2 were produced here, 165 were emitted in producing our imports, and 730 avoided through our exports.

In the long-term it does not particularly matter which of these measures gets used, as the mix of imports and exports gets averaged out.  Over the whole quarter, carbon emissions would be 153g/kWh with our measure, or 151 g/kWh with production-based accounting.  But, it does matter on the hourly timescale, consumption based accounting swings more widely.

Imports and exports helped make the electricity we consume lower carbon on the 24th, but the very next day they increased our carbon intensity from 176 to 196 g/kWh.

When renewable output is high in Britain we typically export the excess to our neighbours as they are willing to pay more for it, and this helps to clean their power systems.  When renewables are low, Britain will import if power from Ireland and the continent is lower cost, but it may well be higher carbon.

Two measures for the carbon intensity of British electricity over the Bank Holiday weekend and surrounding days

This speaks to the wider question of decarbonising the whole economy.

Should we use production or consumption based accounting?  With production (by far the most common measure), the UK is doing very well, and overall emissions are down 32% so far this century.  With consumption-based accounting it’s a very different story, and they’re only down 13%*.

This is because we import more from abroad, everything from manufactured goods to food, to data when streaming music and films online.

Either option would allow us to claim we are zero carbon through accounting conventions.  On the one hand (production-based accounting), Britain could be producing 100% clean power, but relying on dirty imports to meet its entire demand – that should not be classed as zero carbon as it’s pushing the problem elsewhere.  On the other hand (consumption-based accounting), it would be possible to get to zero carbon emissions from electricity consumed even with unabated gas power stations running.  If we got to 96% low carbon (1300 MW of gas running), we would be down at 25 g/kWh.  Then if we imported fully from France and sent it to the Netherlands and Ireland, we’d get down to 0 g/kWh.

Regardless of how you measure carbon intensity, it is important to recognise that Britain’s electricity is cleaner than ever.

The hard task ahead is to make these times the norm rather than the exception, by continuing to expand renewable generation, preparing the grid for their integration, and introducing negative emissions technologies such as BECCS (bioenergy with carbon capture and storage).


Read full Report (PDF)   |  Read full Report   |   Read press release


Front cover of Drax Electric Insights Q2 2020 report

Electric Insights Q2 2020 report [click to view/download]

Could hydrogen power stations offer flexible electricity for a net zero future?

Pipework in a chemical factory

We’re familiar with using natural gas every day in heating homes, powering boilers and igniting stove tops. But this same natural gas – predominantly methane – is also one of the most important sources of electricity to the UK. In 2019 gas generation accounted for 39% of Great Britain’s electricity mix. But that could soon be changing.

Hydrogen, the super simple, super light element, can be a zero-carbon emissions source of fuel. While we’re used to seeing it in everyday in water (H2O), as a gas it has been tested as an alternative to methane in homes and as a fuel for vehicles.

Could it also replace natural gas in power stations and help keep the lights on?

The need for a new gas

Car arriving at hydrogen gas station

Hydrogen fuel station

Natural gas has been the largest single source of electricity in Great Britain since around 2000 (aside from the period 2012-14 when coal made a resurgence due to high gas prices). The dominance of gas over coal is in part thanks to the abundant supply of it in the North Sea. Along with carbon pricing, domestic supply makes gas much cheaper than coal, and much cleaner, emitting as much as 60% less CO2 than the solid fossil fuel.

Added to this is the ability of gas power stations to start up, change their output and shut down very quickly to meet sudden shifts in electricity demand. This flexibility is helpful to support the growth of weather-dependant renewable sources of power such as wind or solar. The stability gas brings has helped the country decarbonise its power supply rapidly.

Hydrogen, on the other hand, can be an even cleaner fuel as it only releases water vapour and nitrous oxide when combusted in large gas turbines. This means it could offer a low- or zero-carbon, flexible alternative to natural gas that makes use of Great Britain’s existing gas infrastructure. But it’s not as simple as just switching fuels.

Switching gases

Some thermal power stations work by combusting a fuel, such as biomass or coal, in a boiler to generate intense heat that turns water into high-pressure steam which then spins a turbine. Gas turbines, however, are different.

Engineer works on a turbine at Drax Power Station

Instead of heating water into steam, a simple gas turbine blasts a mix of gas, plus air from the surrounding atmosphere, at high pressure into a combustion chamber, where a chemical reaction takes place – oxygen from the air continuously feeding a gas-powered flame. The high-pressure and hot gasses then spin a turbine. The reaction that takes place inside the combustion chamber is dependent on the chemical mix that enters it.

“Natural gas turbines have been tailored and optimised for their working conditions,” explains Richard Armstrong, Drax Lead Engineer.

“Hydrogen is a gas that burns in the same way as natural gas, but it burns at different temperatures, at different speeds and it requires different ratios of oxygen to get the most efficient combustion.”

Switching a power station from natural gas to hydrogen would take significant testing and refining to optimise every aspect of the process and ensure everything is safe. This would no doubt continue over years, subtly developing the engines over time to improve efficiency in a similar way to how natural gas combustion has evolved. But it’s certainly possible.

What may be trickier though is providing the supply of hydrogen necessary to power and balance the country’s electricity system. 

Making hydrogen

Hydrogen is the most abundant element in the universe. But it’s very rare to find it on its own. Because it’s so atomically simple, it’s highly reactive and almost always found naturally bonded to other elements.

Water is the prime example: it’s made up of two hydrogen atoms and one oxygen atom, making it H2O. Hydrogen’s tendency to bond with everything means a pure stream of it, as would be needed in a power station, has to be produced rather than extracted from underground like natural gas.

Hydrogen as a gas at standard temperature and pressure is known by the symbol H2.

A power station would also need a lot more hydrogen than natural gas. By volume it would take three times as much hydrogen to produce the same amount of energy as would be needed with natural gas. However, because it is so light the hydrogen would still have a lower mass.

“A very large supply of hydrogen would be needed, which doesn’t exist in the UK at the moment,” says Rachel Grima, Research & Innovation Engineer at Drax. “So, at the same time as converting a power plant to hydrogen, you’d need to build a facility to produce it alongside it.”

One of the most established ways to produce hydrogen is through a process known as steam methane reforming. This applies high temperatures and pressure to natural gas to break down the methane (which makes up the majority of natural gas) into hydrogen and carbon dioxide (CO2).

The obvious problem with the process is it still emits CO2, meaning carbon capture and storage (CCS) systems are needed if it is to be carbon neutral.

“It’s almost like capturing the CO2 from natural gas before its combusted, rather than post-combustion,” explains Grima. “One of the advantages of this is that the CO2 is at a much higher concentration, which makes it much easier to capture than in flue gas when it is diluted with a lot of nitrogen.”

Using natural gas in the process produces what’s known as ‘grey hydrogen’, adding carbon capture to make the process carbon neutral is known as ‘blue hydrogen’ – but there are ways to make it with renewable energy sources too.

Electrolysis is already an established technology, where an electrical current is used to break water down into hydrogen and oxygen. This ‘green hydrogen’ cuts out the CO2 emissions that come from using natural gas. However, like charging an electric vehicle, the process is only carbon-neutral if the electricity powering it comes from zero carbon sources, such as nuclear, wind and solar.

It’s also possible to produce hydrogen from biomass. By putting biomass under high temperatures and adding a limited amount of oxygen (to prevent the biomass combusting) the biomass can be gasified, meaning it is turned into a mix of hydrogen and CO2. By using a sustainable biomass supply chain where forests absorb the equivalent of the CO2 emitted but where some fossil fuels are used within the supply chain, the process becomes low carbon.

Carbon capture use and storage (CCUS) Incubation Area, Drax Power Station

Carbon capture use and storage (CCUS) Incubation Area, Drax Power Station

CCS can then be added to make it carbon negative overall, meaning more CO2 is captured and stored at forest level and in below-ground carbon storage than is emitted throughout its lifecycle. This form of ‘green hydrogen’ is known as bioenergy with carbon capture and storage (BECCS) hydrogen or negative emissions hydrogen.

There are plenty of options for making hydrogen, but doing it at the scale needed for power generation and ensuring it’s an affordable fuel is the real challenge. Then there is the issue of transporting and working with hydrogen.

“The difficulty is less in converting the UK’s gas power stations and turbines themselves. That’s a hurdle but most turbine manufacturers already in the process of developing solutions for this,” says Armstrong.

“The challenge is establishing a stable and consistent supply of hydrogen and the transmission network to get it to site.”

Working with the lightest known element

Today hydrogen is mainly transported by truck as either a gas or cooled down to minus-253 degrees Celsius, at which point it becomes a liquid (LH2). However, there is plenty of infrastructure already in place around the UK that could make transporting hydrogen significantly more efficient.

“The UK has a very advanced and comprehensive gas grid. A conversion to hydrogen would be more economic if you could repurpose the existing gas infrastructure,” says Hannah Steedman, Innovation Engineer at Drax.

“The most feasible way to feed a power station is through pipelines and a lot of work is underway to determine if the current natural gas network could be used for hydrogen.”

Gas stove

Hydrogen is different to natural gas in that it is a very small and highly reactive molecule,  therefore it needs to be treated differently. For example, parts of the existing gas network are made of steel, a metal which hydrogen reacts with, causing what’s known as hydrogen embrittlement, which can lead to cracks and failures that could potentially allow gas to escape. There are also factors around safety and efficiency to consider.

Like natural gas, hydrogen is also odourless, meaning it would need to have an odourant added to it. Experimentation is underway to find out if mercaptan, the odourant added to natural gas to give it a sulphuric smell, is also compatible with hydrogen.

But for all the challenges that might come with switching to hydrogen, there are huge advantages.

The UK’s gas network – both power generation and domestic – must move away from fossil fuels if it is to stop emitting CO2 into the atmosphere, and for the country to reach net zero by 2050. While the process will not be as simple as switching gases, it creates an opportunity to upgrade the UK’s gas infrastructure – for power, in homes and even as a vehicle fuel.

It won’t happen overnight, but hydrogen is a proven energy fuel source. While it may take time to ramp up production to a scale which can meet demand, at a reasonable cost, transitioning to hydrogen is a chance to future-proof the gas systems that contributes so heavily to the UK’s stable power system.