Tag: decarbonisation

Supporting the deployment of Bioenergy Carbon Capture and Storage (BECCS) in the UK: business model options

Innovation engineer inspecting CCUS incubation area BECCS pilot plant at Drax Power Station, 2019

Click to view/download the report PDF.

Drax Power Station is currently exploring the option of adding carbon capture and storage equipment to its biomass-fired generating units. The resulting plant could produce at least 8 million tonnes (Mt) of negative CO2 emissions each year, as well as generating renewable electricity. Drax is planning to make a final investment decision (FID) on its bioenergy with carbon capture and storage (‘BECCS in power’1) investment in Q1 2024, with the first BECCS unit to be operating by 2027.

The potential of BECCS as part of the path to Net Zero has been widely recognised.

  • BECCS in power is an important part of all of the Climate Change Committee (CCC)’s Net Zero scenarios, contributing to negative emissions of between 16- 39Mt CO2e per year by 20502. Investment needs to occur early: by 2035, the CCC sees a role for 3-4GW of BECCS, as part of a mix of low carbon generation3.
  • The Government’s Energy White Paper commits, by 2022, to establishing the role which BECCS can play in reducing carbon emissions across the economy and setting out how the technology could be deployed. The Government has also committed to invest up to £1 billion to support the establishment of carbon capture, usage and storage (CCUS) in four industrial clusters4.
  • National Grid’s 2020 Future Energy Scenarios (FES) indicate that it is not possible to achieve Net Zero without BECCS5.

However, at present, a business model6 which could enable this investment is not in place. A business model is required because a number of barriers and market failures otherwise make economic investment impossible.

  • There is no market for negative emissions. There is currently no source of remuneration for the value delivered by negative emissions, and therefore no return for the investment needed to achieve them.
  • Positive spillovers are not remunerated. Positive spillovers that would be delivered by a first-of-a-kind BECCS power plant, but which are not remunerated include:
    • providing an anchor load for carbon dioxide (CO2) transport and storage (T&S) infrastructure that can be used by subsequent CCS projects;
    • delivering learning that will help lower the costs of subsequent BECCS power plants; and
    • delivering learning and shared skills that can be used across a range of CCS projects, including hydrogen production with CCS.
  • BECCS relies on the presence of CO2 transport and storage infrastructure. Where this infrastructure doesn’t already exist, or where the availability or costs are highly uncertain, this presents a significant risk to investors in BECCS in power.
CCUS incubation area, Drax Power Station, July 2019

CCUS incubation area, Drax Power Station; click image to view/download

Frontier Economics has been commissioned by Drax to develop and evaluate business model options for BECCS in power that could overcome these barriers, and help deliver timely investment in BECCS.

Business model options

We started with a long list of business model options. After eliminating options that are unsuitable for BECCS in power, we considered the following three options in detail.

  • Power Contract for Difference (CfD): the strike price of the CfD would be set to include remuneration for negative emissions, low carbon power and for learnings and spillover benefits.
  • Carbon payment: a contractual carbon payment would provide a fixed payment per tonne of negative emissions. The payment level would be set to include remuneration for negative emissions, low carbon power and for learnings and spillovers.
  • Carbon payment + power CfD: this option combines the two options above. The carbon payment would provide remuneration for negative emissions and learnings and spillovers while the power CfD would support power market revenues for the plant’s renewable power output.

We first considered if committing to any of these business model options for BECCS in power now might restrict future policy options for a broader GGR support scheme. We assessed whether these options could, over time, be transitioned into a broader GGR support scheme (i.e. one not just focused on BECCS in power), and concluded that this would be possible for all of them.

We then considered how these business model options could be funded, and whether the choice of a business model option is linked to a particular source of funds (for example, power CfDs are currently funded by a levy paid by electricity suppliers to the Low Carbon Contracts Company [LCCC]). We concluded that business models do not need to be attached to specific funding sources; all of the options can be designed to fit with numerous different funding options, so the two decisions can be made independently. This means that the business model options can be considered on their own terms, with thinking about funding sources being progressed in parallel.

We then evaluated the three business model options against a set of criteria developed from principles set out in the BEIS consultation on business models for CCS, summarised in the figure below.

Figure 1: Principles for design of business models

Instil investor confidence▪ Attract innovation
▪ Attract new entrants
▪ Instil supply chain confidence
Cost efficiency▪ Drive efficient management of investment costs
▪ Drive efficient quantity of investment
▪ Drive efficient dispatch and operation
▪ Risks allocated in an efficient way, taking into account the impact on the cost of capital
Feasibility▪ Limit administrative burden
▪ Practicality for investors
▪ Requirement for complementary policy
▪ Wider policy and state aid compatibility
▪ Timely implementation
Fair cost sharing▪ Allows fair and practical cost distribution
Ease of policy transition▪ Ease of transition to subsidy free system
▪ Ease of transition to technology neutral solution

Source: Frontier Economics. Click to view/download graphic. 

All three business model options performed well across most criteria. However, our evaluation highlighted some key trade-offs to consider when choosing a business model:

  • investor confidence: the power CfD and the two-part model with a CfD performed better than the carbon payment on this measure, as they shield investors from wholesale power market fluctuations;
  • feasibility: the power CfD performed best on this measure. Because it is already established in existing legislation and is well understood, it will be quick to implement. Introducing a mechanism to provide carbon payments may require new legislation. However, this will be needed in any case to support other CCUS technologies7, and could be introduced in time before projects come online; and
  • potential to become technology neutral and subsidy free: all three options could transition to a mid-term regime which could be technology neutral. However, the stand-alone power CfD performed least well as it does not deliver any learnings around remunerating negative emissions.

Overall, the two-part model performed well across the criteria and would offer a clear path to a technology neutral and subsidy free world, delivering learnings that will be relevant for other GGRs as well.

Conclusions

The UK’s Net Zero target will be challenging to achieve, and will require investment in negative emissions technologies to offset residual emissions from hard-to-abate sectors, as highlighted by the CCC8. BECCS in power is a particularly important part of this picture, and represents a cost-effective means of delivering the scale of negative emissions needed. Early investment in BECCS is also important in insuring against the risk and cost of ”back ending” significant abatement effort.

However, market failures, most notably the lack of a market for negative emissions, lack of remuneration for positive spillovers and learnings, and reliance on availability of T&S infrastructure, mean that without policy intervention, the required level of BECCS in power is unlikely to be delivered in time to contribute to Net Zero.

There are a number of business options available in the near term to overcome these barriers. In our view, a two-part model combining a power CfD and a carbon payment is preferable.

This measure:

  • addresses identified market failures;
  • can be implemented relatively easily and in time to capture benefits of early BECCS in power investment; and
  • can be structured to ensure an efficient outcome for customers (including with reference to investors’ likely cost of capital) and in a way that allocates risks appropriately.

View/download the full report (PDF).


1: Biomass can be combusted to generate energy (typically in the form of power, but this could also be in the form of heat or liquid fuel), or gasified to produce hydrogen. The resulting emissions can then be captured and stored using CCS technology. The focus of this report is on biomass combustion to generate power, with CCS, which we refer to as ‘BECCS in power’. We refer to biomass gasification with CCS as ‘BECCS for hydrogen’.

2: CCC (2020) , The Sixth Carbon Budget, Greenhouse Gas Removals, https://www.theccc.org.uk/wp-content/uploads/2020/12/Sector-summary-GHG-removals.pdf The CCC’s 2019 Net Zero report also saw a role for BECCS, with 51Mt of emissions removals included in the Further Ambition scenario by 2050. CCC (2019), Net Zero: The UK’s Contribution to Stopping Global Warming. https://www.theccc.org.uk/publication/net-zero-the-uks-contribution-to-stopping-global-warming/

3: CCC (2020), Policies for the Sixth Carbon Budget, https://www.theccc.org.uk/wp-content/uploads/2020/12/Policies-for-the-Sixth-Carbon-Budget-and-Net-Zero.pdf

4: BEIS (2020), Powering our Net Zero Future, https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/945899/201216_BEIS_EWP_Command_Paper_Accessible.pdf

5: National Grid (2020), Future Energy Scenarios 2020, https://www.nationalgrideso.com/future-energy/future-energy-scenarios/fes-2020-documents

6: In this report, we use “business model” to describe Government market-based incentives for investment and operation. This is in line with the use of this term by BEIS, for example in BEIS (2019), Business Models For Carbon Capture, Usage And Storage, https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/819648/ccus-business-models-consultation.pdf

7: BEIS (2020), CCUS: An update on business models for Carbon Capture, Usage and Storage https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/946561/ccus-business-models-commercial-update.pdf

8: CCC (2020) , The Sixth Carbon Budget, Greenhouse Gas Removals, https://www.theccc.org.uk/wp-content/uploads/2020/12/Sector-summary-GHG-removals.pdf

The jobs and careers supporting the UK’s net zero future

In October last year several of our employees, from policy managers to apprentices, took over the Energy UK Young Energy Professional (YEP) Forum’s Twitter account to share their experiences so far working in the energy industry and their roles at Drax. The YEP forum consists of a network of energy industry professionals with less than 10 years’ experience, and aims to provide them with opportunities to collaborate, develop and recognise successes. The following insights from employees at Drax show the importance of our workforce in achieving our ambition and what they have learnt so far about starting a career in the energy industry.

Engineer working in the turbine hall at Drax Power Station, North Yorkshire

Meet Samuel, the apprentice

One of our technical apprentices, Samuel Plumb, explains why he decided to kick-start his career with a Drax apprenticeship plus what the selection process involves: “I applied for this role because it’s a mix of practical skills and problem-solving. Drax has a large site with a huge range of equipment and processes so no two days are the same. Working here appealed to me because I’m really interested in the power industry and Drax plays a key role in generation. I found out about this apprenticeship through online research, submitted an application, completed aptitude tests online, sat another aptitude test on-site and then eventually attended an interview.”

Meet Richard, the policy manager

Richard Gow explains that with the right policies in place, Drax could become a carbon negative power station, enabling a zero carbon industrial cluster in the Humber region. The Drax Group Policy and Government Relations Manager outlines how his role helps to develop the necessary frameworks: “I engage with policymakers, advisors and experts across the UK to understand the policy and political landscape and how this could impact Drax’s commercial objectives. The energy sector is at the forefront of decarbonisation and it’s exciting to be involved in developing policies and market frameworks to support this transition to net zero.”

By investing in bioenergy with carbon capture and storage (BECCS), hydrogen and other green technologies in the Humber, industry can regain a competitive edge. New jobs can help to rejuvenate communities and the wider region, as evidenced by a recent report from Vivid Economics on the socio-economic benefits of BECCS. This investment at Drax supports the UK’s levelling up agenda and to Build Back Better, emphasising the need for the UK to have a skilled workforce to achieve net zero. Will Gardiner, CEO of Drax Group, has explained how our own ambitions will also boost our communities and local economies by “helping to create a cleaner environment for future generations whilst creating new jobs and export opportunities for British businesses.”

Noting that BECCS at Drax is not just limited to new engineering or technician roles, as a UK-US company, with sites from Selby to the Scottish Highlands to Louisiana and Mississippi in the US South, we continue to attain young professionals and apprentices across a wide-range of departments, including sustainable business and smart energy services.

Engineer below Cruachan Power Station dam

Engineer below Cruachan Power Station dam

Meet Emma, the renewables engagement officer

And at Drax we emphasise that now is the time for action to tackle climate change. Emma Persson, Renewables Engagement Officer, describes her motivations for joining the clean energy transition and how her role is helping to ensure the UK reaches its net zero target: “As a recent graduate with a Masters in energy and society, I wanted to work in the energy sector and be part of its real and current transition to mitigating climate change instead of contributing to it. This is an exciting time, and my part in this transformation involves stakeholder engagement and contributing to Drax’s climate policy to ensure we reach our carbon negative ambition.”

By developing talent within schools from a young age and inspiring students to study Science, Technology, Engineering and Maths (STEM) subjects, Drax also encourages future career opportunities. We are proud to be working with a number of local schools and colleges, such as Selby College, with whom we recently signed a new five-year partnership. This shows our continued commitment to ensuring students of all ages are equipped with the skills needed to progress the UK’s cleaner energy future, while having a positive social impact on our local communities.

Mobilising a Million

Students from Selby College collect their laptops donated by Drax (April 2020)

We recently became the UK’s first energy company to announce an initiative to improve employability for a million people by 2025. Drax’s Opportunity Action Plan is in partnership with the Social Mobility Pledge, led by the former Education Secretary, the Rt Hon Justine Greening. Through our ‘Mobilising a Million’ initiative, we aim to connect with one million people by 2025, improving skills, education, employability and opportunity. This sets a new and higher standard for the levelling up agenda in Britain, with a wider focus on environmental, social and corporate governance (ESG) issues. Clare Harbord, Drax Group Director of Corporate Affairs, said of the initiative, “By boosting education, skills and employability opportunities for a million people, we can start to level the playing field and build a more diverse workforce. This will make the energy sector stronger and able to make a more significant contribution to the UK’s green recovery.”

During the COVID-19 pandemic we have also been using virtual resources to provide new ways of learning from home, delivering laptops for learners, and a new series of webinars titled ‘Drax in the Classroom’ as well as virtual work experience and tours of Drax Power Station, North Yorkshire and Cruachan in Scotland. Before the pandemic, we also hosted a number of inspiring careers events at Drax, including the ‘Women of the Future’. The event showcased the various opportunities available for young women, part of our continued efforts to increase diversity in our workforce and develop the future generation of energy professionals.

Learn more about careers at Drax and our current opportunities here.

Full year results for the twelve months ended 31 December 2020

Water outlet into Loch Awe from Cruachan Power Station

Drax Group plc
(“Drax” or the “Group”; Symbol:DRX)
RNS Number : 2751Q

Twelve months ended 31 December20202019
Key financial performance measures
Adjusted EBITDA (£ million) (1)(2)412410
Continuing operations366371
Discontinued operations – gas generation4639
Cash generated from operations (£ million)413471
Net debt (£ million) (3)776841
Adjusted basic EPS (pence) (1)29.629.9
Total dividend (pence per share)17.115.9
Total financial performance measures
Coal and other asset obsolescence charges(239)-
Operating (loss) / profit (£ million)(156)48
Loss before tax (£ million)(235)(16)

Financial highlights

  • Adjusted EBITDA from continuing and discontinued operations up £2 million to £412 million (2019: £410 million)
    • Includes estimated impact of Covid-19 of around £60 million, principally SME customers
    • Strong performance in Pellet Production and Generation
  • Strong cash generation and balance sheet
    • 1.9 x net debt to Adjusted EBITDA, with £682 million of cash and committed facilities at 31 December 2020
    • New carbon-linked RCF, Eurobond and infrastructure facilities with maturities to 2030 and reduced cost of debt
  • Sustainable and growing dividend up 7.5% to 17.1 pence per share (2019: 15.9 pence per share)
    • Proposed final dividend of 10.3 pence per share (2019: 9.5 pence per share)

Operational highlights

  • Pellet Production – 7% increase in production, improved quality and 5% reduction in cost
  • Generation – 11% of UK’s renewable electricity, strong operations and system support performance
  • Customers – lower demand and an increase in bad debt provisions, principally SME customers
  • Sustainability – sale of gas assets, end of coal generation, CDP Climate A- rating (2019: C) and TCFD Supporter
Train carrying sustainably sourced compressed wood pellets arriving at Drax Power Station in North Yorkshire

Train carrying sustainably sourced compressed wood pellets arriving at Drax Power Station in North Yorkshire [click to view/download]

Will Gardiner, CEO of Drax Group said:

“Drax has supported its customers, communities and employees throughout the Covid-19 pandemic and I want to thank colleagues across the Group for their commitment and hard work over the last year. We have delivered strong results, a growing dividend for shareholders and excellent progress against our business strategy.

Drax Group CEO Will Gardiner

Drax Group CEO Will Gardiner in the control room at Drax Power Station [Click to view/download]

“Our focus is on renewable power. Our carbon intensity is one of the lowest of all European power generators. We aim to be carbon negative by 2030 and are continuing to make progress. We are announcing today that we will not develop new gas fired power at Drax. This builds on our decision to end commercial coal generation and the recent sale of our existing gas power stations.

“The proposed acquisition of Pinnacle Renewable Energy will position Drax as the world’s leading sustainable biomass generation and supply business, paving the way for us to develop bioenergy with carbon capture and storage (BECCS) – taking us even further in our decarbonisation.”

2021 outlook

  • Targeting carbon negative
    • No new gas generation at Drax Power Station, retain options for system support gas in next capacity auction
    • Completion of sale of existing gas generation (January 2021) and end of commercial coal (March 2021)
  • Progressing biomass strategy
    • Proposed acquisition of Pinnacle Renewable Energy Inc. (Pinnacle) – supports long-term options for third-party supply, BECCS and biomass generation
    • BECCS – commencement of DCO planning process, potential FEED study and clarity on regional clusters

Infographic: How BECCS removes carbon from the atmosphere

  • Operations
    • Major planned outage on CfD unit and continued impact of Covid-19 on SME customers
    • Strong contracted power sales (2021–2023) 24.4TWh at £48.5/MWh

Operational review

Pellet Production – capacity expansion, improved quality and reduced cost

  • Adjusted EBITDA up 63% to £52 million (2019: £32 million)
    • Pellet production up 7% to 1.5Mt (2019: 1.4Mt)
    • Reduction in fines (larger particle-sized dust)
    • Cost of production down 5% to $153/t(4) (2019: $161/t(4))
  • Cost reduction plan – targeting $35/t (£13/MWh(5)) saving vs. 2018 on 1.9Mt by 2022 – annual savings of $64 million
    • $28 million of run-rate savings from projects delivered 2019-2020
    • Low-cost fibre, LaSalle (improved rail infrastructure, woodyard and sawmill co-location) and HQ relocation
    • $36 million of additional run-rate savings to be delivered by end of 2022
    • Expansion of Morehouse plant completed Q4 2020
    • Expansion of Amite and LaSalle, increased use of low-cost fibre and improved logistics
  • Additional savings from $40 million investment in three 40kt satellite plants in US Gulf – commissioning from 2021, with potential for up to 0.5Mt – targeting 20% reduction in pellet cost versus current cost

 Power Generation – flexible and renewable generation

  • Adjusted EBITDA up 9% to £446 million (2019: £408 million)
    • Biomass generation up 5% to 14.1TWh (2019: 13.4TWh) – record CfD availability (Q2 2020 – 99.5%)
    • Good commercial availability across the portfolio – 91% (2019: 88%)
    • Strong contracted position provided protection from lower demand and reduction in ROC(6) prices
    • Includes £46 million from discontinued gas (2019: £39 million)
Water cooling tower at Drax Power Station

Water cooling tower at Drax Power Station [click to view/download]

  • System support (balancing mechanism, Ancillary Services and optimisation) of £118 million (2019: £120 million)
    • Hydro and gas – one-off hydro contracts in 2019, offset by higher demand for system support services in 2020
    • Lower level of biomass activity due to higher value in generation market
    • 2019 included benefit of buying back coal generation
  • Pumped storage / hydro – excellent operational and system support performance
    • £73 million of Adjusted EBITDA (Cruachan, Lanark Galloway schemes and Daldowie) (2019: £71 million)
Aqueduct supplying water into the reservoir at Cruachan pumped hydro storage plant in Scotland

Aqueduct supplying water into the reservoir at Cruachan pumped hydro storage plant in Scotland [click to view/download]

  • Coal – 8% of output in 2020 and short-term increase in carbon emissions – utilisation of coal stock by March 2021
  • Covid-19 – business continuity plan in place to ensure continued operation and two major outages completed

Customers – managing the impact of Covid-19 on SME customers

  • Customer service employeeAdjusted EBITDA loss of £39 million (2019: £17 million profit) inclusive of estimated £60 million impact of Covid-19
    • Reduced demand, MtM loss on pre-purchased power and increase in bad debt, principally SME customers
    • Continue to evaluate SME options to maximise value and alignment with strategy
  • Development of Drax Customers Industrial & Commercial portfolio – increased sales to high-quality counterparties providing revenue visibility, while supporting the Group’s flexible and renewable energy proposition
  • Renewable and energy services expand Group system support capability and customer sustainability objectives

Other financial information

  • Total operating loss from continuing operations of £156 million reflects:
    • £70 million MtM loss on derivative contracts
    • £239 million obsolescence charges, principally coal (includes £13 million associated with decision not to develop new gas generation at Drax Power Station)
    • £34 million of costs associated with coal closure (redundancy, pensions and site reparations), with annual run-rate savings once complete of c.£30-35 million
  • Total loss after tax of £158 million includes £18 million reduced valuation of deferred tax asset resulting from UK Government’s reversal of previously announced corporation tax rate change (adjusted impact of £14 million, 3.5 pence per share)
  • Capital investment of £183 million(7) – continued invest in biomass strategy, some delay into 2021 due to Covid-19
    • 2021 expected investment of £190-210 million (excludes proposed acquisition of Pinnacle), includes expansion of LaSalle and Amite pellet plants and satellite plant development
  • Net debt of £776 million, including cash and cash equivalents of £290 million (31 December 2019: £404 million)
      • 1.9 x net debt to EBITDA, with £682 million of total cash and total committed facilities
      • Expect around 2 x net debt to EBITDA by end of 2022 inclusive of proposed acquisition of Pinnacle

 


View complete full year report View investor presentation Listen to webcast

Standing together
against climate
change

Global leadership illustration

Tackling climate change requires global collaboration. As a UK-US sustainable energy company, with communities on both sides of the Atlantic, we at Drax are keenly aware of the need for thinking that transcends countries and borders.

Joe Biden has become the 46th President of my native country at a crucial time to ensure there is global leadership and collaboration on climate change. Starting with re-joining the Paris Agreement, I am confident that the new administration can make a significant difference to this once-in-a-lifetime challenge.

This is why Drax and our partners are mobilising a transatlantic coalition of negative emissions producers. This can foster collaboration and shared learning between the different technologies and techniques for carbon removal that are essential to decarbonise the global economy.

Biomass storage domes at Drax Power Station in North Yorkshire at sunset

Biomass storage domes at Drax Power Station in North Yorkshire

Whilst political and technical challenges lie ahead, clear long-term policies that spur collaboration, drive innovation and enable technologies at scale are essential in achieving the UK and US’ aligned targets of reaching net zero carbon emissions by 2050.

Collaboration between countries and industries

What makes climate change so difficult to tackle is that it requires collaboration from many different parties on a scale like few other projects. This is why the Paris Agreement and this year’s COP26 conference in Glasgow are so vital.

Sustainable biomass wood pellets being safely loaded at the Port of Greater Baton Rouge onto a vessel destined for Drax Power Station

Our effort towards delivering negative emissions using bioenergy with carbon capture and storage (BECCS) is another example of ambitious decarbonisation that is most impactful as part of an integrated, collaborative energy system. The technology depends upon sustainable forest management in regions, such as the US South where our American communities operate. Carbon capture using sustainable bioenergy will help Drax to be carbon negative by 2030 – an ambition I announced at COP25, just over a year ago in Madrid.

Will Gardiner at Powering Past Coal Alliance event in the UK Pavilion at COP25 in Madrid

Will Gardiner announcing Drax’s carbon negative ambition at COP25 in Madrid (December 2019).

Experts on both sides of the Atlantic consider BECCS essential for net zero. The UK’s Climate Change Committee says it will play a major role in tackling carbon dioxide (CO2) emissions that will remain in the UK economy after 2050, from industries such as aviation and agriculture that will be difficult to fully decarbonise. Meanwhile, a report published last year by New York’s Columbia University revealed that rapid development of BECCS is needed within the next 10 years in order to curb climate change.

A variety of negative emissions technologies are required to capture between 10% and 20% of the 35 billion metric tonnes of carbon produced annually that the International Energy Agency says is needed to prevent the worst effects of climate change.

We believe that sharing our experience and expertise in areas such as forestry, bioenergy, and carbon capture will be crucial in helping more countries, industries and businesses deploy a range of technologies.

A formal coalition of negative emissions producers that brings together approaches including land management, afforestation and reforestation, as well as technical solutions like direct air capture (DAC), as well as BECCS, would offer an avenue to ensure knowledge is shared globally.

Direct air capture (DAC) facility

Direct air capture (DAC) facility

It would also offer flexibility in countries’ paths to net zero emissions. If one approach under-delivers, other technologies can work together to compensate and meet CO2 removal targets.

As with renewable energy, working in partnership with governments is essential to develop these innovations into the cost-effective, large scale solutions needed to meet climate targets in the mid-century.

A shared economic opportunity

I agree whole heartedly that a nation’s economy and environment are intrinsically linked – something many leaders are now saying, including President Biden. The recently approved US economic stimulus bill, supported by both Republicans and Democrats in Congress and which allocates $35 billion for new clean energy initiatives, is a positive step for climate technology and job creation.

Globally as many as 65 million well-paid jobs could be created through investment in clean energy systems. In the UK, BECCS and negative emissions are not just essential in preventing the impact of climate change, but are also a vital economic force as the world begins to recover from the effects of COVID-19.

Engineer inside the turbine hall of Drax Power Station

Government and private investments in clean energy technologies can create thousands of well-paid jobs, new careers, education opportunities and upskill workforces. Developing BECCS at Drax Power Station, for example, would support around 17,000 jobs during the peak of construction in 2028, including roles in construction, local supply chains and the wider economy.

Additional jobs would be supported and created throughout our international supply chain. This includes the rail, shipping and forestry industries that are integral to rural communities in the US South.

We are also partnered with 11 other organisations in the UK’s Humber region to develop a carbon capture, usage and storage (CCUS) and hydrogen industrial cluster with the potential to spearhead creating and supporting more than 200,000 jobs around the UK in 2039.

The expertise and equipment needed for such a project can be shared, traded and exported to other industrial clusters around the world, allowing us to help reach global climate goals and drive global standards for CCUS and biomass sustainability.

Clear, long-term policies are essential here, not just to help develop technology but to mitigate risk and encourage investment. These are the next crucial steps needed to deploy negative emissions at the scale required to impact CO2 emissions and lives of people.

Engineer at BECCS pilot project within Drax Power Station

At Drax we directly employ almost 3,000 people in the US and UK, and indirectly support thousands of families through our supply chains on both sides of the Atlantic. Drax Power Station is the most advanced BECCS project in the world and we stand ready to invest in this cutting-edge carbon capture and removal technology. We can then share our expertise with the United States and the rest of the world – a world where major economies are committing to a net zero future and benefiting from a green economic recovery.

Charge. Recharge. The evolution of batteries

From watches to toothbrushes, mobile phones to cars, batteries are a power source for many of our everyday belongings. And while their beginnings can be traced back to the 19th century, their innovation has transformed industries, technology use and society at large today.

Energy storage systems such as pumped-hydropower have long played an important role in balancing electricity systems, but as the UK and countries around the world seek to decarbonise industries and make greater use of intermittent, renewable sources, there is a need for greater levels of storage.

While pumped-hydro storage requires the right kind of terrain, batteries can theoretically be built wherever there is the space and investment. But what actually is a battery, and how does it work?

Turning chemicals to electrical flow

Batteries are comprised of one or more cells which store chemical energy, and are able to convert that energy into electricity. In most batteries, there are three main components: an anode, cathode and electrolyte.

The anode and cathode are terminals for the flow of energy and are typically made of metal. The electrolyte is a chemical medium that sits between the terminals allowing an electrical charge to pass through. This is often a liquid, but increasingly research points to the potential to use solids and create what are known as solid-state batteries.

How a lithium ion battery works

How a lithium ion battery works

It’s only when a battery is connected to a device that it completes a circuit and chemical reactions take place that allow the flow of electrical energy from the battery to the device. But how much electrical energy a battery can dispense has always been a hurdle to using them as a power source, making rechargeable batteries an important breakthrough.

The same reaction backwards

A key element in battery development was the exploration of rechargeable cells. These have long provided mobility and reliability in small scale outputs, but are now being looked to as a source of large-scale energy storage.

Invented by physician Gaston Planté in 1859, rechargeable batteries are possible because the chemical reactions that take place are reversible. Once the initial stored charge has been depleted via chemical reaction, these reactions occur again, but this time backwards, to store a new charge.

Battery charger with AA rechargeable batteries

Battery charger with AA rechargeable batteries

Using a lead-acid system, Planté’s composition was similar to that found in rechargeable batteries used in cars and motorbikes today, although the characteristics of these cells, such as their heavy weight, meant they were not convenient for many other uses.

As a result, a journey of continuous research and optimisation to decrease the size and weight of rechargeable batteries began. This includes investigation into the alternative chemical compositions found in batteries today – nickel-metal hydride and lithium-ion to name two.

Recharging in a low-carbon energy system

Just as we have seen the size and capacity of batteries bettered throughout history, the application and optimisation of modern-day lithium-ion cells looks to continue too, powering the world’s move towards a low carbon, renewable energy future.

From electric vehicle batteries with a million mile lifespan to a 200 megawatt battery farm in South Africa, lithium-ion allows reasonably large-scale energy storage. It can also play a key role in power grid stabilisation over short durations of time such as a few hours.

Tesla gigafactory

Tesla gigafactory

For the UK to run on 100% renewable electricity sources, batteries would be imperative in complimenting other flexible renewables, such as biomass and hydropower. As a support technology, batteries can help ensure a continuous supply of electricity to homes and cities, even when cloud cover and low wind prevents other sources generating.

Conversely, charging and recharging batteries can also be used to absorb and store electricity when there is more sun and wind generation than needed, avoiding surges in electric current or wasted generation.

Changing charging

Woman charging smartphone using wireless charging pad

Alongside the advancements of battery capacity and composition, the way we use them to charge is also changing. Just as Bluetooth and Wi-Fi avoid the tethering required of wired connections, wireless charging can increase mobility and remove physical limitations.

Small-scale wireless charging is in use today. Many mobile phones, toothbrushes, smartwatches and earbuds now have wireless charging pads. These use near-field charging, meaning the device must be in close proximity to the charger to receive power.

However, efficient far-field charging is in development, with companies like Energous and Ossia developing over-the-air charging solutions for wearable tech, medical products, smart homes, and industrial equipment. This would mean devices could be powered and charged from many metres away.

The implications of this are vast, for example your devices could be charged just by entering your home or office. There could be less need for invasive surgery to change the batteries for pacemakers, neurotransmitters and other implanted medical equipment.

This type of technology could also provide passive charging for electric vehicles. The UK Department for Transport has announced a trial in Nottingham, where charging plates will be placed on parts of the town’s roads allowing electric taxis to charge while waiting briefly to pick up passengers. As charging technology and speed continues to increase, this might mean vehicles could charge wirelessly not only while parked, but when stopped at traffic lights.

3d rendered illustration of an elderly man with a pace maker

As the world shifts away from fossil fuels to renewable sources, batteries, with continued improvement in performance and capacity, will be crucial in supporting our connected lives, transport systems and electrical grids.

The UK is the leader the world needs to tackle climate change

Snow on mountains near Cruachan Power Station, Scotland

December 2020 marks the fifth anniversary of the Paris Agreement. It represented a landmark moment in the global effort to combat climate change and build a better future. However, global progress is not moving at the speed it needs to in order to meet the treaty’s target of keeping global warming below 1.5-2 degrees Celsius.

Countries have set their own decarbonisation targets and many companies have laid out plans to become carbon neutral or even carbon negative – as we at Drax intend to achieve by 2030. While these leading ambitions are important for the UK and the world to meet the goals of the Paris Agreement, real action, polices and investment are needed at scale.

We have a clearer view of the path ahead than five years ago. We know from the recent 6th Carbon Budget that renewable energy, as well as carbon capture, usage and storage (CCUS) are essential for the UK to reach its target of net zero carbon emissions by 2050.

In that detailed, 1,000-page report, the Climate Change Committee (CCC) was clear that progress must be made immediately – the country as a whole must be 78% of the way there by 2035. By investing where it’s needed, the UK can lead the world in a whole new industry. One that may come to define the next century.

Leading the world in decarbonisation

It was a combination of resource and ingenuity that enabled the UK to launch the Industrial Revolution some 250 years ago. Today the country is in a similar position of being able to inspire and help transform the world.

As a country – one that I moved to over 20 years ago now – we have decarbonised at a greater pace than any other over the past decade. Investing in renewable generation such as wind, solar and biomass has allowed the UK to transform its energy systems and set ambitious targets for net zero emissions.

To remain resilient and meet the increased electricity demand of the future, power grids will require vastly increased support from energy storage systems such as pumped hydro – as well as flexible, reliable forms of low and zero carbon power generation.

However, the urgency of climate change means the UK must go beyond decarbonisation to implementing negative emissions technologies (which remove more carbon dioxide (CO2) from the atmosphere than they emit). The CCC, as well as National Grid’s Future Energy Scenarios report have emphasised the necessity of negative emissions for the UK to reach net zero, by removing CO2 not just from energy but other industries too.

The UK can build on its global leadership in decarbonisation to invest in the cutting-edge green technology that can take the country to net zero, establishing it as a world leader for others to follow.

Creating an industry, exporting it to the world

When the Paris agreement was signed, I was just joining Drax. I had been impressed by the power station’s transformation from coal to biomass – Europe’s largest decarbonisation project – supporting thousands of jobs in the process.

Five years on and I’m excited for the next stage: delivering negative emissions. By deploying bioenergy with carbon capture and storage (BECCS) we can permanently remove CO2 from the atmosphere while producing renewable electricity.

Drax has successfully piloted BECCS and is ready to deploy it at scale as part of our Zero Carbon Humber partnership.

I’m confident the partnership with other leading energy, industrial and academic organisations can act as a revitalising force in a region that has historically been under-invested in, protect 55,000 jobs and create 50,000 new opportunities.

Developing the supply chain surrounding a world-leading zero-carbon cluster in the Humber could deliver a £3.2 billion economic boost to the wider economy as we emerge from the COVID-19 pandemic.

I believe we can establish a new industry to export globally. The Humber’s ports have a long history of trade and we can build on this legacy. The machinery, equipment and services needed to develop BECCS and Zero Carbon Humber will be an essential export as the rest of the world races to decarbonise.

Unloading sustainable biomass wood pellets destined for Drax Power Station from a vessel at the port of Immingham

Unloading sustainable biomass wood pellets destined for Drax Power Station from a vessel at the port of Immingham

By providing training and partnering with educational institutions we can increase scientific and technical skills. Net zero industrial clusters can enable more in society the opportunity to have rewarding and fulfilling engineering, energy and environmental careers.

This model can reach around the world – positioning people and businesses to help countries to reach the collective goals of Paris Agreements.

The economic benefits for such achievements far outweigh the costs of failing to stem global warming and we are ready to invest in the technologies needed to do so. With robust government policies in place, a net zero future could cost as little as 1% of GDP over the next 30 years.

Countering climate change is a once-in-a-lifetime challenge for the world, but also a once-in-a-lifetime opportunity to build a sustainable future with sustainable jobs, improved standards of living, health and wellbeing. The UK has a responsibility to use its expertise and resources, setting in place the structures that can allow companies like mine – Drax – to lead the world to reaching the Paris Agreement’s targets and beyond.

Find out how our cutting-edge carbon removal technologies will help the UK, and the world, hit net zero. Explore the future here.

Committing to a net zero power system as part of COP26

Dear Prime Minister, Chancellor, COP26 President and Minister for Energy and Clean Growth,

We are a group of energy companies investing tens of billions in the coming decade, deploying the low carbon infrastructure the UK will need to get to net zero and drive a green recovery to the COVID-19 crisis.

We welcome the leadership shown on the Ten Point Plan for a Green Industrial Revolution, and the detailed work going on across government to deliver a net zero economy by 2050. We are writing to you to call on the Government to signal what this will mean for UK electricity decarbonisation by committing to a date for a net zero power system.

Head of BECCS inspects pilot plant within Drax Power Station's CCUS Incubation Unit

Head of BECCS Carl Clayton inspects pipes at the CCUS Incubation Area, Drax Power Station

The electricity sector will be the backbone of our net zero economy, and there will be ever increasing periods where Great Britain is powered by only zero carbon generation. To support this, the Electricity System Operator is putting in place the systems, products and services to enable periods of zero emissions electricity system operation by 2025.

Achieving a net zero power system will require government to continue its efforts in key policy areas such as carbon pricing, which has been central in delivering UK leadership in the move away from coal and has led to UK electricity emissions falling by over 63% between 2012 and 2019 alone.

It is thanks to successive governments’ commitment to robust carbon pricing that the UK is now using levels of coal in power generation last seen 250 years ago – before the birth of the steam locomotive. A consistent, robust carbon price has also unlocked long term investment low-carbon power generation such that power generated by renewables overtook fossil fuel power generation for the first time in British history in the first quarter of 2020.

Yet, even with the demise of coal and the progress in offshore wind, more needs to be done to drive the remaining emissions from electricity as its use is extended across the economy.

In the near-term, in combination with other policies, continued robust carbon pricing on electricity will incentivise the continued deployment of low carbon generation, market dispatch of upcoming gas-fired generation with Carbon Capture and Storage (CCS) projects and the blending of low carbon hydrogen with gas-fired generation. Further forward, a robust carbon price can incentivise 100% hydrogen use in gas-fired generation, and importantly drive negative emissions to facilitate the delivery of a net zero economy.

Next year, the world’s attention will focus on Glasgow and negotiations crucial to achieving our climate change targets, with important commitments already made by China, the EU, Japan and South Korea amongst others. An ambitious 2030 target from the UK will help kickstart the Sprint to Glasgow ahead of the UK-UN Climate Summit on 12 December.

Electricity cables and pylon snaking around a mountain near Cruachan Power Station in the Highlands

Electricity cables and pylon snaking around a mountain near Cruachan Power Station, Drax’s flexible pumped storage facility in the Highlands

2030 ambition is clearly needed, but to deliver on net zero, deep decarbonisation will be required. Previous commitments from the UK on its coal phase out and being the first major economy to adopt a net zero target continue to encourage similar international actions. To build on these and continue UK leadership on electricity sector decarbonisation, we call on the UK to commit to a date for a net zero power system ahead of COP26, to match the commitment of the US President-elect’s Clean Energy Plan. To ensure the maximum benefit at lowest cost, the chosen date should be informed by analysis and consider broad stakeholder input.

Alongside near-term stability as the UK’s carbon pricing future is determined, to meet this commitment Government should launch a consultation on a date for a net zero power system by the Budget next year, with a target date to be confirmed in the UK’s upcoming Net Zero Strategy. This commitment would send a signal to the rest of the world that the UK intends to maintain its leadership position on climate and to build a greener, more resilient economy.

To:

  • Rt Hon Boris Johnson MP, Prime Minister of the United Kingdom
  • Rt Hon Rishi Sunak MP, Chancellor of the Exchequer
  • Rt Hon Alok Sharma MP, Secretary of State for Business, Energy and Industrial Strategy and UNFCCC COP26 President
  • Rt Hon Kwasi Kwarteng MP, Minister for Business, Energy and Clean Growth

Signatories:

BP, Drax, National Grid ESO, Sembcorp, Shell and SSE

View/download letter in PDF format