Tag: carbon removals

For 50 years Drax Power Station has been generating power and high quality jobs

By Bruce Heppenstall, Plant Director, Drax Power Station

Drax Power Station has kept Britain’s lights on for 50 years. As well as playing a key role in the country’s energy security, providing enough power for 4 million homes, we have been a long-term source of high-quality well-paid jobs, too.

The site I manage in Selby is one of the largest employers locally and combined with our regional supply chains we contribute £358m per year to the economy of Yorkshire and the Humber. There won’t be a single constituency within the region where we don’t have some form of economic impact.

As the Plant Director, I am proud of this role that we play in supporting regional prosperity. We employ around 1,000 people directly at Drax Power Station and through maintenance, logistics and other activities hundreds of contractor colleagues can also be on site during any one week – increasing over a thousand during a planned outage.

However, our impact doesn’t end at the borders of Yorkshire and the Humber either. We are one of the largest users of rail freight in the UK and our biomass wagons take pellets from the Ports of Tyne, Liverpool, Hull and Immingham. This element of our supply chain also supports 2,500 jobs across the country.

Analysis from Oxford Economics shows that in 2021 the economic activity created by Drax Power Station contributed £735m to the UK economy and supported 7,130 jobs.

For some time, we have also been investing heavily in the workforce of the future. Since 2003, we have trained over 150 apprentices at the power station. We work in partnership with Selby College and the University of Sheffield to give the next generation the skills they need for long-term, rewarding careers in renewable power and delivering net zero.

We know it is important to get young people engaged in green skills early and that is why, through the Drax Foundation, we work closely with local authorities, schools and social enterprises to support STEM education and training on energy efficiency. We’re also behind an initiative to install LED lightbulbs and solar panels in schools to manage their energy costs and get young people interested in our industry.

The future of Drax Power Station will involve us continuing to generate renewable power from biomass but also adding carbon capture and storage and creating the world’s largest BECCS facility. We are planning to invest billions in this critically important carbon removal technology and up to 10,000 jobs could be created and supported during construction.

BECCS is vital because it provides reliable, renewable power to support energy security, while removing millions of tonnes of carbon dioxide from the atmosphere and making a significant contribution towards addressing the climate crisis – no other technology does both.

Drax Power Station has played an important role both regionally and nationally through our contribution to energy security, jobs and economic growth for the last 50 years. And with the successful delivery of our BECCS project, I very much hope that we will continue to do so for the next 50.

But to get there we need to secure the right policy support for BECCS from the next government. That includes rapidly launching the Track-1 expansion and Track-2 project selection processes for CCS and making urgent progress on the development of a business model for greenhouse gas removal technology. With these in place we can get BECCS operational by 2030, removing millions tonnes of carbon dioxide from the atmosphere per year while ensuring that local people can build their careers in skilled jobs at the heart of the green transition, for decades to come in Selby.

Learn more about Drax’s plans for BECCS here.

Drax’s plans can help the next Government deliver UK energy security

The UK has decarbonised its energy system at a quicker rate than any other country, but having done ‘the easy bit’ and with demand for electricity forecast to increase by 50% by 2035, we are now at an inflection point.

Additionally, leading thinktank Public First’s research shows that in 2028 the UK is on course to hit an energy security “crunch point” – with peak demand predicted to exceed secure dispatchable and baseload capacity by 7.5GW.

This is due to delays in bringing new generation on to the system, anticipated increased demand for power, and aging assets, including coal, nuclear and gas, coming off the electricity grid.

That means to deliver energy security, meet rising demand for power and to reach binding net zero targets, including the 5th and 6th carbon budgets, the next government needs to go further and faster.

This year marks half a century that Drax has been powering the UK and contributing to security of supply. Today, the flexible, dispatchable power that our assets in North Yorkshire and Scotland produce keep the lights on when the wind doesn’t blow and the sun doesn’t shine.

Drax Power Station, the UK’s largest single-source of renewable electricity, powers 4 million homes. In Scotland, Cruachan Power Station and our other hydro power sites provide the grid flexibility, reduce the need for curtailment payments to wind farms and help meet the demand for energy.

In total our business delivers about 4% of the UK’s electricity and 8% of its renewable power.

Subject to getting the right policy support, we stand ready to invest billions to deliver carbon removals and renewable power using bioenergy with carbon capture and storage (BECCS) at Drax and more than double the pumped hydro storage capacity at Cruachan.

Completing these projects will mean we can play a vital long-term role in providing secure power to the country and supporting the next government in meeting the goal of a decarbonised grid by 2030 or 2035. Without Drax’s assets delivering these targets will be extremely challenging.

Our plans for BECCS and the expansion at Cruachan will also reduce the country’s exposure to commercially volatile and imported fossil fuels, enhance our national security and create and support thousands of jobs during construction.

But to realise this potential, the next government must prioritise and speed up implementing the support required to unlock the investment for these major infrastructure projects.

To deliver the first pumped storage hydro power stations in the UK for decades, including the Cruachan expansion, we need to see a cap and floor mechanism implemented. This would provide an investment framework to reduce risks for investors while at the same time encouraging operators of the new storage facilities to respond to system needs.

And all large-scale biomass generators planning to transition to BECCS need the certainty of a bridging mechanism to maintain their flexible, dispatchable renewable power between the end of the current renewable support and BECCS operations starting.

The carbon removals BECCS can deliver are recognised by the world’s leading climate scientists, including the UN’s IPCC and the UK’s CCC, as crucial to almost all pathways to reach net zero and fighting climate change. The carbon credits produced through BECCS can be purchased by companies with emissions that are hard or impossible to abate providing a pathway for them to permanently remove carbon from the atmosphere.

Energy security, jobs and skills and net zero should go hand in hand and we want to work with the next Government to swiftly implement these policies. Doing so will give new ministers the best chance possible to maintain progress on decarbonising the UK’s energy system while ensuring there is sufficient, secure capacity to meet the country’s energy needs without relying on foreign fossil fuels.

Learn more about how Drax supports the UK energy system here.

The EU’s embrace of carbon removals

By Kasia Wilk, Head of Public Affairs and Policy, EU & Asia

The UK may no longer be part of the European Union, but the decisions taken by its institutions still impact British businesses and consumers.

What happens in Brussels matters, even if Britain no longer has a seat at the decision table. You may not notice the link to the EU at first, but often technological changes have their roots in the decisions made by the organisation’s institutions.

Take for instance something as innocuous as your mobile phone charger. In recent years USB-C charging ports have increasingly become the standard across Apple and Android devices. This is no accident, an EU directive to mandate all devices for sale on the continent must have a universal USB-C charge port by the end of this year.

This European decision has made the world’s biggest tech companies reconfigure its global designs and supply chains.

If Brussels can influence how the world charges its mobile phones, you won’t be surprised to learn its decisions on climate change policy carry significant influence too.

Nearly all the UN IPCC’s pathways to net zero by 2050 require a significant scale-up of engineered carbon removals. Their importance has led the EU to begin significant policy development in this area.

The opening months of 2024 has seen developments in the space gather at pace. In February, the EU Commission set out its proposals to reduce emissions by 90% by 2040 compared to levels in 1990. To achieve this, the Commission expects to scale-up industrial carbon removals like BECCS and DACCS alongside land-based techniques such as afforestation to 400 million tonnes of removals annually by 2040.

Released alongside the proposed target was the Industrial Carbon Management Strategy providing a roadmap for the removal and storage of millions of tonnes of CO₂ within the Union in the next three decades. This stressed the need to develop further policy options and support mechanisms for BECCS and DACCS.

With the need for large-scale carbon removals made clear, attention is now turning to how to certify and ensure credibility of removal projects. The EU institutions recently reached an agreement on the Carbon Removal Certification Framework (CRCF) which will likely become a blueprint for global for carbon dioxide removals (CDR) frameworks. This framework will create a critical foundation for scaling the voluntary market for CDRs in the EU, including BECCS.

Carbon removal companies like Drax want transparent and robust rules in the sector. It is vital that only high-quality removals, and removals that would not otherwise have taken place, are credited. The regulator also must prevent the same activity from being certified twice or using the same certificate twice. This is what the EU’s proposals aim to do, and it could be a blueprint for the UK and governments around the world. However, there remains room for improvement as the CRCF framework only covers removals within the EU’s borders, which means the international nature of the voluntary carbon removals market has not been considered.

Demand for CDRs is continuing to grow, with several high-profile international deals already announced. One example is our own memorandum of understanding with Respira which would enable the firm to buy up to 2 million metric tonnes of CDR certificates.

While progress is being made by Brussels, more policy development is needed in financially incentivising carbon removals through enhanced business models. Developments could include integrating carbon removals into compliance markets like the EU’s Emissions Trading Scheme and introducing support schemes such as a Carbon Contracts for Difference. As the sector’s costs decrease through learning and economies of scale, the support frameworks could be tapered in the long-term ensuring value for money for consumers and governments.

While it can feel daunting standing at the foot of the hill staring at the summit, we know that the climate, our communities, and businesses across the continent are worth the sharp ascent.

Around 93% of emissions take place outside of the confines of the EU, but by acting swiftly Europe can lead the world on the development of a vibrant carbon removals industry.

At Drax, our aim is to become a global leader in carbon removals. We are currently progressing plans to deliver two BECCS projects – one in the UK and one in the US – by 2030, with both projects able to permanently remove a combined volume of 7 million tonnes of carbon dioxide from the atmosphere each year.

We want to eventually be able to geologically sequester 20 million tonnes of carbon each year. Successful trials at our North Yorkshire power station in the UK enabled Drax to become the first company in the world to successfully capture carbon dioxide from the combustion of a 100% biomass feedstock.

BECCS will provide durable, high-integrity carbon removal credits and gigatonne scalability, and is the only technology that generates reliable, renewable power while removing carbon from the atmosphere.

With many Member States continuing to rely on fossil fuels to power their grids, biomass and BECCS conversions could be a vital role in making the EU’s ambition climate targets a reality. It is critical that the EU institutions continues to develop policy at pace to ensure businesses can have confidence to invest in carbon removal projects and the credits which come from them.

The EU has a remarkable opportunity to lead the world on this important area of climate policy, and it is one I hope they seize.

A prosperous future needs energy security and carbon removals – BECCS delivers both

  • Reaching net zero while delivering economic growth requires both energy security and carbon removals.
  • In the late 2020s, UK demand for energy is set to exceed secure and dispatchable supply by 5GW at peak times – leaving the country dependent on imported and intermittent sources to avoid shortages.
  • To bridge the energy security gap the Government needs to extend the lives of existing assets, including biomass and nuclear plants, and curb peak demand.
  • Drax plans to install Bioenergy with Carbon Capture and Storage (BECCS) at Drax Power Station, if we secure the right support from Government this project will ensure the site continues to keep the lights on for millions of homes and businesses well into the future.
  • BECCS is a unique technology, nothing else generates renewable power while removing carbon from the atmosphere.
  • Bridging support for Drax Power Station from 2027 as a pathway to BECCS will mitigate the energy crunch and reduce dependency on intermittent generation.
  • There is a huge opportunity for carbon removals technology to assist with other industries in decarbonising, and further opportunities to reduce cost by sharing resources.
  • BECCS is only possible if we ensure high standards for carbon removals, and these standards must acknowledge the difference between engineered and natural solutions.

We all know that action is needed to tackle the global climate emergency. If we get these changes right, they will ultimately be beneficial to economies and society.

Industries of all kinds will need to reduce their CO2 emissions. While reducing greenhouse gas (GHG) emissions is vital, it is becoming clear that reductions alone are unlikely to be enough: it will also be necessary to remove GHGs from the atmosphere to limit the global temperature increase to 1.5C. Any residual emissions in hard-to-abate sectors like aviation or agriculture will require carbon removals at scale, in both a combination of nature and technology-based carbon removal solutions.

This vision of the future doesn’t have to mean low-growth economies or scarce energy supply. Instead, we can build and adapt our energy systems for a sustainable future that enables prosperous economies and thriving societies.

Today, energy systems are some of the world’s most emission-intensive sectors, though many are rapidly decarbonising. The UK has made excellent progress in delivering this, ahead of many other countries, with around 60% of its power now coming from low-carbon sources.

The continued evolution of the energy industry is also intrinsically connected to delivering carbon removals at scale.

The two primary engineered carbon removals technologies are BECCS and Direct Air Capture and Storage (DACS). DACS can remove CO2 from ambient air and then store it underground. To do so, DACS requires a low carbon source of power. BECCS, by contrast, generates power using renewable biomass that absorbs CO2 as it grows. The CO2 is then captured and stored safely and permanently underground.

Done right, they both remove more CO2 than they emit – delivering carbon removals. But BECCS’ unique capability to deliver carbon removals while generating 24/7 baseload power means it can support energy security while helping to tackle climate change.

Delivering energy security in a net zero future

As society electrifies to meet net zero, the demand for power will substantially increase. Meeting these increases will require governments to work with the private sector to deploy a range of technologies. Increasing deployment of renewables like wind and solar around the world will be vital. But these intermittent sources will need complementary technologies like short and long-term energy storage, as well as baseload power generation that can ensure energy systems remain secure and stable.

BECCS is the only renewable energy and carbon removal technology that offers the full suite of system support services. This includes a reliable, stable source of power integrated with other intermittent renewables, something that will only become more important as energy systems decarbonise.

One example of the role biomass can play in global energy solutions comes from research we commissioned from Baringa, which finds that peak demand for UK energy will increase by up to 7GW by 2027. The closure of coal, older gas, and nuclear power stations, however, will also remove up to 7GW of secure capacity from the grid. This could be further exacerbated by ongoing costly delays in new power plants such as Hinkley Point C, which is not expected to be completed until 2031. This means the percentage of ‘secure’ capacity needed to cover peak demand in the UK is projected to decrease

Recent independent analysis by Public First, reaffirms that the UK will hit an energy security “crunch point” in 2028, and the UK’s demand for power is set to exceed secure dispatchable and baseload capacity by 7.5GW. This shortfall would leave the UK more dependent on intermittent domestic and international generation.

Therefore, existing assets like Drax Power Station will be even more critical to energy security. Bridging support for Drax Power Station from 2027 until BECCS is online will reduce the risk of energy shortages and reduce dependency on overseas sources, supporting energy security and decarbonisation through the crunch.

The Government’s Powering Up Britain strategy aims to set the course for delivering the UK’s net zero and energy security ambitions. A key part of this programme is carbon removals and the development and deployment of large-scale Power BECCS by 2030.

We’ve shown at our North Yorkshire site how BECCS is ready to work within the current energy ecosystem. It’s an opportunity to utilise existing infrastructure, convert coal power stations and adapt to an energy secure, net zero future.

In January 2024, the Secretary of State for Energy Security and Net Zero, Claire Coutinho, approved the Development Consent Order (DCO) for our plans to convert two biomass units at Drax Power Station to BECCS.

Providing the coming months see real progress in our discussions and there is swift decision making, we stand ready to invest billions to develop what will become world’s largest engineered carbon removals project at Drax Power Station.

Our plans for Power BECCS in North Yorkshire would enable us to remove up to eight million tonnes of CO2 from the atmosphere per year, while still generating secure, dispatchable, renewable power for millions of homes and businesses.

Without BECCS at Drax, the UK’s target of five million tonnes of carbon removals by 2030 would be difficult to achieve. The pioneering project would build on Yorkshire’s proud industrial heritage, as well as potentially delivering more than 10,000 jobs at the height of construction and position the county and the UK as leaders in the race to create and scale a technology required to capture greenhouse gas emissions.

The DCO approval is another milestone in the development of our BECCS plans and demonstrates both the continued role that Drax Power Station has in delivering UK energy security and the critical role it could have in delivering large-scale carbon dioxide removals to meet net zero targets.

It offers a model for energy security globally. While ensuring the phase-out of fossil fuels around the world, biomass offers a renewable, flexible alternative to reduce our dependency on forms of power such as coal. With BECCS, we can go further by transforming existing coal power stations from carbon emitters into carbon removers.

Decarbonisation across industries

Carbon dioxide removal technologies, like BECCS and DACS, can neutralise hard-to-abate and residual emissions across whole industrial clusters.

Furthermore, carbon removal hubs or clusters, with shared decarbonisation goals, technology, and infrastructure, offer locations where BECCS and DACS can help emissions-intensive industries decarbonise. Sharing infrastructure, like pipelines and storage locations can reduce the cost of deploying carbon removals by creating economies of scale.

Major industries like steel, cement, and chemicals, that employ millions of people around the world may only be viable in a net zero future with connections to carbon removals technologies. BECCS also offers these industries, that depend on energy-intensive processes, an alternative source of power from fossil fuels.

Baringa’s analysis found that Drax’s proposals for BECCS at Drax Power Station could save the UK up to £15bn in whole economy costs in meeting the country’s net zero goals between 2030 and 2050. It also demonstrates that without BECCS at Drax, meeting carbon reduction targets is more complicated and expensive and carbon savings would be needed in other sectors.

Research by the Intergovernmental Panel on Climate Change, the world’s leading authority on climate science, also states that to tackle climate change, up to 9.5 billion tonnes of carbon removals via BECCS will be required globally per year by 2050. So as the world enters the pivotal decades to act on the climate crisis, governments around the world must take action. One idea of a decarbonisation hub is included in the U.S. Inflation Reduction Act, which commits $3.5 billion to developing four regional Direct Air Capture Hubs.

The Inflation Reduction Act’s total $369 billion funding package focused on energy security and climate change contains a host of potential opportunities for BECCS deployment across renewable power generation, sustainable aviation fuel and hydrogen.

These include a $40 billion loan fund for projects which utilise innovative technology to reduce, avoid or sequester carbon, and $140 million to create a competitive purchasing programme for carbon removals.

Furthermore, the act increases the availability of the 45Q tax credit for carbon capture and storage projects, increasing their value from $50 a tonne of carbon removals to $85 per tonne. These are all promising steps to creating the market and environment needed to deploy technologies like BECCS and DACS.

We recently announced that we’re launching a new business focused on becoming the global leader in large-scale carbon removals, which will oversee the development and construction of our new-build BECCS plants in the US. These projects, through the investment they attract and the jobs they generate, can become key economic drivers in a given region.

The global opportunity for BECCS is clear. The market for carbon removals is growing. And we want to ensure BECCS offers a high-integrity form of carbon removals that delivers permanent carbon sequestration.

Ensuring high quality carbon markets

As pioneers in the field, we’re setting the bar for carbon removal standards, ensuring quality is intrinsic to Drax’s offering. To help achieve this, we’ve partnered with Stockholm Exergi and EcoEngineers to develop a world-leading methodology to ensure the integrity of BECCS carbon removals. Our paper, ‘Corporate climate claims: The case for including permanent carbon removals’ also looks at resetting the standard on corporate claims for carbon removals. Tackling climate change while advancing sustainability is at the heart of our purpose and we’re committed to supporting organisations – especially those with hard-to-abate emissions – work towards decarbonising and reaching climate targets.

From the biomass used to fuel BECCS, to capture and transport processes, it’s imperative the carbon removed is always greater than any carbon emitted throughout the process.

Building from a sustainable base, with a high set of standards can make BECCS a transformational technology in powering the future and delivering carbon removals. No other technology can do both. BECCS can generate renewable power. BECCS can remove emissions. BECCS can deliver a prosperous, net zero future for the world.

To find out more about BECCS and how carbon removals can support your company’s decarbonisation journey, visit draxcarbonremovals.com