Tag: biomass energy

This is how you unload a wood chip truck

Truck raising and lowering

A truck arrives at an industrial facility deep in the expanding forestland of the south-eastern USA. It passes through a set of gates, over a massive scale, then onto a metal platform.

The driver steps out and pushes a button on a nearby console. Slowly, the platform beneath the truck tilts and rises. As it does, the truck’s cargo empties into a large container behind it. Two minutes later it’s empty.

This is how you unload a wood fuel truck at Drax Biomass’ compressed wood pellet plants in Louisiana and Mississippi.

What is a tipper?

“Some people call them truck dumpers, but it depends on who you talk to,” says Jim Stemple, Senior Director of Procurement at Drax Biomass. “We just call it the tipper.” Regardless of what it’s called, what the tipper does is easy to explain: it lifts trucks and uses the power of gravity to empty them quickly and efficiently.

The sight of a truck being lifted into the air might be a rare one across the Atlantic, however at industrial facilities in the United States it’s more common. “Tippers are used to unload trucks carrying cargo such as corn, grain, and gravel,” Stemple explains. “Basically anything that can be unloaded just by tipping.”

Both of Drax Biomass’ two operational pellet facilities (a third is currently idle while being upgraded) use tippers to unload the daily deliveries of bark – known in the forestry industry as hog fuel, which is used to heat the plants’ wood chip dryers – sawdust and raw wood chips, which are used to make the compressed wood pellets.

close-up of truck raising and lowering

How does it work?

The tipper uses hydraulic pistons to lift the truck platform at one end while the truck itself rests against a reinforced barrier at the other. To ensure safety, each vehicle must be reinforced at the very end (where the load is emptying from) so they can hold the weight of the truck above it as it tips.

Each tipper can lift up to 60 tonnes and can accommodate vehicles over 50 feet long. Once tipped far enough (each platform tips to a roughly 60-degree angle), the renewable fuel begins to unload and a diverter guides it to one of two places depending on what it will be used for.

“One way takes it to the chip and sawdust piles – which then goes through the pelleting process of the hammer mills, the dryer and the pellet mill,” says Stemple. “The other way takes it to the fuel pile, which goes to the furnace.”

The furnace heats the dryer which ensures wood chips have a moisture level between 11.5% and 12% before they go through the pelleting process.

“If everything goes right you can tip four to five trucks an hour,” says Stemple. From full and tipping to empty and exiting takes only a few minutes before the trucks are on the road to pick up another load.

Efficiency benefits

Using the power of gravity to unload a truck might seem a rudimentary approach, but it’s also an efficient one. Firstly, there’s the speed it allows. Multiple trucks can arrive and unload every hour. And because cargo is delivered straight into the system, there’s no time lost between unloading the wood from truck to container to system.

Secondly, for the truck owners, the benefits are they don’t need to carry out costly hydraulic maintenance on their trucks. Instead, it’s just the tipper – one piece of equipment – which is maintained to keep operations on track.

However, there is one thing drivers need to be wary of: what they leave in their driver cabins. Open coffee cups, food containers – anything not firmly secured – all quickly become potential hazards once the tipper comes into play.

“I guess leaving something like that in the cab only happens once,” Stemple says. “The first time a trucker has to clean out a mess from his cab is probably the last time.”

How many homes can we power with renewables?

Terraced houses at night time on portland dorset

More of Britain’s electricity is coming from renewables than ever before. New offshore wind farms, solar capacity hitting double figures and the reliability of biomass are having a marked effect on the country’s power.

Our electricity make up is more diverse than ever. More than this, it is cleaner. During the first three months of 2017, emissions from power generation were 10% lower than the same period last year and 33% lower than the first quarter of 2015.

And while this is a huge and necessary step in the UK’s efforts towards slowing global warming, it would mean little if renewables weren’t also keeping our lights on. That’s exactly what they are doing – powering businesses, industries and homes across the country. But how many, exactly?

The scale of renewables

In 2015 the total electricity consumption of the UK was 303 TWh. To put that into perspective, that’s roughly enough power to boil 121.1 billion kettles. A quarter of the 360 TWh of electricity generated that year  came from renewables – 84 TWh – a massive 29% increase over 2014. Of that figure, Drax’s biomass units contributed 11.5 TWh, approximately 3% of that year’s total power generation.

So, renewables are big, but how big?

Panoramic photo of modern house with outdoor and indoor lighting, at night

According to the 2011 Census there are 26.4 million households in the UK. Ofgem, the energy regulator, says the average UK household uses roughly 3.1 MWh of electricity a year (the average US household uses approximately 10.8 MWh).

If we were to hypothesise that all the renewable power generated in 2015 had been consumed by UK households, there would be enough to power every single one. And there’d be enough left over to power 600,000 more.

Using just the power generated thanks to sustainably sourced compressed wood pellets at Drax Power Station would be enough to satisfy the equivalent of 4.1 million homes – nearly twice the number of households in Scotland or 800,000 more homes than in the whole of London. 15% of all UK homes could have been powered by just half that one station in Selby, North Yorkshire.

Finding the right mix for the future

Electricity is used to power more than just homes. It powers businesses, transport and infrastructure – almost all parts of our lives are fuelled by electricity. While there may be the hypothetical equivalent to power every single household in the UK with renewables (with room to spare), the reality is there is a far larger nationwide demand that needs to be fulfilled. And this means we can’t rely on renewables alone. Instead, what’s required is an energy mix that also includes other low carbon sources of electricity – backed up by a new fleet of gas power stations and storage that can respond rapidly to changes in demand.

While we’re not yet in a position where we can power all homes all the time using renewables, that day could well be coming. A new report from the International Renewable Energy Agency (IREA) suggests a mix of renewable technologies including biomass and bioenergy with carbon capture and storage (BECCS) could meet the majority of global energy demand across all sectors of the world economy by 2050 – while helping to keep the rise in global temperatures to under two degrees celsius above 1990 levels.

Everything you ever wanted to know about cooling towers

Close up image of Drax cooling tower

Cooling towers aren’t beautiful buildings in the traditional sense, but it’s undeniable they are icons of 20th century architecture. They’re a ubiquitous part of our landscape – each one a reminder of our industrial heritage.

Yet despite the familiarity we have with them, knowledge about what a cooling tower actually does remains limited. A common misconception is that they release pollution. In fact, what they actually release is water vapour – similar to, but nowhere near as hot, as the steam coming out of your kettle every morning. And this probably isn’t the only thing you never knew about cooling towers. 

What does a cooling tower do?

As the name suggests, a cooling tower’s primary function is to lower temperatures – specifically of water, or ‘cooling water’ as it’s known at Drax.

Power stations utilise a substantial amount of water in the generation of electricity. At a thermal power plant, such as Drax, fuel is used to heat demineralised water to turn it to high pressure steam. This steam is used to spin turbines and generate electricity before being cooled by the cooling water, which flows through two condensers on either side of each of the steam turbines, and then returning to the boiler. It is this process that the cooling towers support – and it plays a pivotal role in the efficiency of electricity generation at Drax’s North Yorkshire site.

To optimise water utilisation, some power stations cycle it. To do this, they have cooling towers, of which at Drax there are 12. These large towers recover the warmed water, which then continues to be circulated where chemistry is permitting.

The warmed water (about 40°C) is pumped into the tower and sprayed out of a set of sprinklers onto a large volume of plastic packing, where it is cooled by the air naturally drawn through the tower. The plastic packing provides a large surface area to help cool the water, which then falls in to the large flat area at the bottom of the massive structure called the cooling tower pond.

As the water cools down, some of it (approximately 2%) escapes the top of the tower as water vapour. This water vapour, which is commonly mistakenly referred to as steam, may be the most visible part of the process but it’s only a by-product of the cooling process.

The majority of the water utilised by Drax Power Station is returned back to the environment, either as vapour from the top of the towers or safely discharged back to the River Ouse. Each year, about half of the water removed from the river is returned there. In effect, it is a huge amount of water recycling and in environmental terms, it is not a consumptive process.

Close-up of side of Drax cooling towers

How do you build a cooling tower?

The history of cooling towers as we know them today dates back to the beginning of the 20th century, when two Dutch engineers were the first to build a tower using a ‘hyperboloid’ shape. Very wide on the bottom, curved in the centre and flared at the top, the structure meant fewer materials were required to construct each tower, it was naturally more robust, and it helped draw in air and aid its flow upwards. It quickly became the de facto design for towers across the world.

The Dutch engineers’ tower measured 34 metres, which at the time was a substantial achievement, but as engineering and construction abilities progressed, so too did the size of cooling towers.

Today, each of 12 towers measures 115 metres tall – big enough to fit the dome of St Paul’s Cathedral or the whole of the Statue of Liberty, with room to spare. If scaled down to the size of an egg, the concrete of each cooling tower would be the same thinness as egg shell.

The structures at Drax are dwarfed by the cooling towers at the Kalisindh power plant in Rajasthan, India, the tallest in the world. Each stands an impressive 202 metres tall – twice the height of the tower housing Big Ben and just a touch taller than the UK’s joint fifth tallest skyscraper, the HSBC Tower at 8 Canada Square in London’s Canary Wharf.

The industrial icon of the future

Today’s energy mix is not what is used to be. The increased use of renewables means we’re no longer as reliant on fossil fuels, and this has an effect on cooling towers. Already a large proportion of the UK’s most prominent towers have been demolished, going the same way as the coal they were once in service to. But this doesn’t mean cooling towers will disappear completely.

Power stations such as Drax, which has upgraded four of its boilers to super-heat water with sustainably-sourced compressed wood pellets instead of coal, the dwindling coal fleet, and some gas facilities still rely on cooling towers. As they continue to be part of our energy mix, the cooling tower will remain an icon of electricity generation for the time being. But it’ll be a mantle it shares with biomass domes, gigantic offshore wind turbines and field-upon-field of solar panels – the icons of today’s diverse energy mix.

View our water cooling towers close up. Drax Power Station is open for individual and group visits. See the Visit Us section for further information.

Why you shouldn’t be surprised by another record-breaking quarter for renewable energy

Field of solar panels shot from above

It’s been another record-breaking quarter for Britain’s power system. During the first three months of 2017, biomass, wind and hydro all registered their highest energy production ever, while solar recorded its highest ever peak output.

And while this is all worth celebrating, it shouldn’t come as a surprise – the last few years have seen Britain’s power system take several significant steps toward decarbonisation and this year is no different. Electric Insights, the quarterly report on Britain’s power system by Dr Iain Staffell from Imperial College London, commissioned by Drax via Imperial Consultants, documents the new gains and confirms the trend: renewables are fast becoming the new norm and in 2017 they continued their growth.

Biomass domes at Drax Power Station

The renewable record breakers

Over this quarter biomass electricity generation hit a record production figure of 4.4 TWh, which means that biomass generators ran at 95% of full capacity – higher than any other technology has achieved over the last decade.

Hydro went 4% better than its previous energy production best by generating 1.6 TWh, while Britain’s wind farms produced 11.3 TWh (10% higher than the previous record, set in 2015). This was helped in part by several new farms being built which increased installed capacity by 5% over last year, but it was also indebted to the mild, windy weather.

Wind farms produced more electricity than coal, 57 days out of 90 during the first three months of 2017

Solar hit a new record peak output at the end of March, when it generated 7.67 GW – enough to power a fifth of the country. In fact, during the last weekend of March, for the first time ever, the country’s demand for electricity from the national grid was lower during an afternoon than during the night. This was because solar panels, which only generate power when the sun is up, tend to sit outside of the national high voltage transmission grid.

Understanding how this happened is to understand how solar energy is changing our national power system.

A reverse of the trend

Electricity demand on the national grid – think of it as the power system’s motorways – is typically higher during the day and early evening (when people are most active, using lights and gadgets) than overnight. However, on the last weekend in March 2017, the opposite was true because of how much solar energy was generated.

Solar panels and some smaller onshore windfarms are ‘invisible’ – they don’t feed into the national grid. Instead, these sources either feed into the regional electricity distribution networks – the power system’s A and B roads – or, as many of them are on people’s roofs and used in their own homes or business premises, it never gets down their driveway. This can mean when solar panels are generating a lot of electricity, there is a lower demand for power from the grid, making it appear that less of the country is using electricity than it actually is.

This was the case during the last weekend of March, when solar generated enough power to satisfy a large part of Britain’s demand. And while this is another positive step towards a lower carbon energy mix, it is about to change the way our power system works, particularly when it comes to the remaining coal power stations.

What the power system needs to provide, today and in the future, is flexibility – to ramp up and down to accommodate for the shifting demand based on supply of intermittent – weather dependent – renewables. Thermal power stations such as gas, coal and biomass can meet much of this demand, but even more rapid response from technologies such as the Open Cycle Gas Turbines that Drax is developing and batteries could fulfil these needs quicker.

Today’s dirty is yesterday’s clean

The record breaking and increased renewable generation of the period from January to March 2017 would mean nothing if it wasn’t matched by a decrease in emissions. During the first three months of 2017, emissions dropped 10% lower than the same period in 2016 and a massive 33% lower than 2015. Coal output alone fell 30% this quarter compared to Q1 2016.

To put the scale of this progress into context we need only look at the quarter’s ‘dirtiest hour’ – the hour in which carbon intensity from electricity generation is at its highest. Between January and March, it peaked on a calm and cold January evening with 424 grams of CO2 released per kWh (g/kWh). The average for generation between 2009 and 2013 was 471 g/kWh. In short, this quarter’s dirtiest hour was cleaner than the average figure just four years ago – yesterday’s average is today’s extremity.

If we want to continue to break records and further progress towards a fully decarbonised power system, this needs to be a consistent aim: making the averages of today tomorrow’s extremes.

Top line stats

Highest energy production ever

  • Wind – 11.3 TWh
  • Biomass – 4.4 TWh
  • Hydro – 1.6 TWh

Record peak output

  • Solar – 7.67 GW
  • Enough to power 1/5 of the country

Yesterday’s average is today’s extremity

  • Average carbon emissions per kWh – 2009-2013
    • 471 g/kWh
  • Average carbon emissions per kWh – Q1 2017
    • 284 g/kWh
  • Peak carbon emissions per kWh – 2009-2013
    • 704 g/kWh
  • Peak carbon emissions per kWh – Q1 2017
    • 424 g/kWh

 

Explore the data in detail by visiting ElectricInsights.co.uk

Commissioned by Drax, Electric Insights is produced independently by a team of academics from Imperial College London, led by Dr Iain Staffell and facilitated by the College’s consultancy company – Imperial Consultants.

Sustainability, certified

Drax Morehouse woodchip truck

Of all the changes to Drax Power Station over the last decade, perhaps the biggest is one you can’t see. Since converting three of its six generating units from coal to run primarily on compressed wood pellets, Drax has reduced those units’ greenhouse gas (GHG) emissions by over 80%.

And while this is a huge improvement, it would mean nothing if the biomass with which those reductions are achieved isn’t sustainably sourced.

For this reason, Drax works with internationally-recognised certification programmes that ensure suppliers manage their forests according to environmental, social and economic criteria.

Thanks to these certification programmes, Drax can be confident it is not only reducing GHG emissions, but supporting responsible forestry from wherever wood fibre is sourced.

Sustainability certifications

The compressed wood pellets used at Drax Power Station come from various locations around the world, so Drax relies on a number of different forest certification programmes, the three main ones being the Sustainable Forest Initiative (SFI), Forest Stewardship Council® (FSC®)1 and the Programme for the Endorsement of Forest Certification (PEFC).

The programmes share a common goal of demonstrating responsible forest management, but adoption rates vary by region. European landowners and regulators are most familiar with the FSC and national PEFC standards, while North American landowners generally prefer SFI and American Tree Farm System (also members of the PEFC family). In instances in which Drax sources wood pellets carrying these certifications, or in instances in which Drax purchase pellets sourced from certified forests, these certifications offer an additional degree of assurance that the pellets are sustainable.

Over 50% of the pellets used at Drax Power Station come from the southern USA, where SFI and American Tree Farm System are the most widely implemented certification programmes. Overall adoption levels in this region are relatively modest. However, the SFI offers an additional level of certification that can be implemented by wood-procuring entities, such as sawmills, pulp mills and pellet mills.

This programme is referred to as SFI Fiber Sourcing, and to obtain it, participants must demonstrate that the raw material in their supply chains come from legal and responsible sources. These sources may or may not include certified forests. The programme also includes requirements related to biodiversity, water quality, landowner outreach and use of forest management and harvesting professionals. Together, these certification systems have long contributed to the improvement of forest management practices in a region that provides Drax with a significant proportion of its pellets.

And since the SFI and ATFS programmes are endorsed by PEFC, North American suppliers have a pathway for their region’s sustainable forest management practices to be recognised by European stakeholders.

These certification programmes have been in use for many years. But with recent growth in the market for wood pellets, a new certification system has emerged to deal specifically with woody biomass.

Trees locked up in a bundle

New kid on the block

The Sustainable Biomass Program (SBP) was set up in 2013 as a certification system to provide assurance that woody biomass is sourced from legal and sustainable sources. But rather than replacing any previous forest certification programmes, it builds on them.

For example, SBP recognises the evidence of sustainable forest management practices gathered under these other programmes. However, the PEFC, SFI and FSC programmes do not include requirements for reporting GHG emissions, a critical gap for biomass generators as they are obligated to report these emissions to European regulators. SBP fills this gap by creating a framework for suppliers to report their emissions to the generators that purchase their pellets.

When a new entity, such as a wood pellet manufacturer, first seeks certification under SBP, that entity is required to assess its supply base.

Feedstock which has already been certified by another established certification programme (SFI, FSC®, PEFC or PEFC approved schemes) is considered SBP-compliant.

All other feedstock must be evaluated against SBP criteria, and the wood pellet manufacturer must carry out a risk assessment to identify the risk of compliance against each of the 38 SBP indicators.

If during the process a specific risk is identified, for example to the forest ecosystem, the wood pellet manufacturer must put in place mitigation measures to manage the risk, such that it can be considered to be effectively controlled or excluded.

These assessments are audited by independent, third party certification bodies and scrutinised by an independent technical committee.

In conducting the risk assessment, the wood pellet manufacturer must consult with a range of stakeholders and provide a public summary of the assessment for transparency purposes.

Sustainable energy for the UK

Counting major energy companies including DONG Energy, E.ON and Drax as members, the SBP has quickly become an authoritative voice in the industry. At the end of 2016, the SBP had 74 certificate holders across 14 countries – including Drax’s pellet manufacturing arm, Drax Biomass, in Mississippi and Louisiana.

It’s a positive step towards providing the right level of certification for woody biomass, and together with the existing forestry certifications it provides Drax with the assurance that it is powering the UK using biomass from legal and sustainable sources.

Like the fast-reducing carbon dioxide emissions of Britain’s power generation sector, it’s a change you can’t see, but one that is making a big difference.

Read the Drax principles for sustainable sourcing.

1 Drax Power Ltd FSC License Code: FSC® – C119787

More power per pound

As the country moves towards a lower carbon future, each renewable power generation technology has its place. Wind, solar, hydro and wave can take advantage of the weather to provide plentiful power – when conditions are right.

Reliable, affordable, renewable power

But people need electricity instantly – not just when it’s a windy night or a sunny day. So, until a time when storage can provide enough affordable capacity to store and supply the grid with power from ample solar and wind farms, the country has to rely, in part, on thermal generation like gas, coal and biomass. Reliable and available on demand, yes. But renewable, low carbon and affordable too? It can be.

A year ago, a report by economic consultancy NERA and researchers at Imperial College London highlighted how a balanced mix of renewable technologies could save bill payers more than £2bn. Now, publicly available Ofgem data on which its newly published Renewables Obligation Annual Report 2015-16 is based reinforces the case for government to continue to support coal-to-biomass unit conversions within that technology mix. Why? Because out of all renewables deployed at large scale, biomass presents the most value for money – less public funding is required for more power produced.

Renewable costs compared

Drax Power Station’s biomass upgrades were the largest recipient of Renewable Obligation (RO) support during the period 2015-16. The transformation from coal to compressed wood pellets has made Drax the largest generator of renewable electricity in the country. And by a significant margin. Drax Power Station produced more than five times the renewable power than the next biggest project supported under the RO – the London Array.

Dr Iain Staffell, lecturer in Sustainable Energy at the Centre for Environmental Policy, Imperial College London, and author of Electric Insights, who has analysed the Ofgem data commented:

“Based on Ofgem’s Renewables Obligation database, the average support that Drax Power Station received was £43.05 per MWh generated. This compares to £88.70 per MWh from the other nine largest projects.”

“Biomass receives half the support of the UK’s other large renewable projects, which are all offshore wind. The average support received across all renewable generators in the RO scheme – which includes much smaller projects and all types of technology – is £58 per MWh. That is around £15 per MWh more than the support received by Drax.”

Ending the age of coal

Drax Group isn’t arguing for limitless support for coal-to-biomass conversions. And Drax Power Station, being the biggest, most modern and efficient of power stations built in the age of coal, is a special case. But if the RO did exist just to support lots of biomass conversions like Drax but no other renewable technologies, then in just one year, between 2015-16, £1bn of costs saving could have been made for the public purse.

Drax Power Station may be the biggest-single site recipient of support under the RO – but it does supply more low carbon power into the National Grid than any other company supported by Renewable Obligation Certificates (ROCs). In fact, 65% of the electricity generated at its Selby, North Yorkshire site, is now renewable. That’s 16% of the entire country’s renewable power – enough to power four million households.

Thanks to the support provided to Drax by previous governments, the current administration has a comparatively cost effective way to help the power sector move towards a lower carbon future. Biomass electricity generated at Drax Power Station has a carbon footprint that is at least 80% less than coal power – supply chain included. Drax Group stands ready to do more – which is why research and development continues apace at the power plant. R&D that the company hopes will result in ever more affordable ways to upgrade its remaining three coal units to sustainably-sourced biomass, before coal’s 2025 deadline.

Commissioned by Drax, Electric Insights is produced independently by a team of academics from Imperial College London, led by Dr Iain Staffell and facilitated by the College’s consultancy company – Imperial Consultants.

Chief Executive comments on full year results

We are playing a vital role in helping change the way energy is generated, supplied and used as the UK moves to a low carbon future.

With the right conditions, we can do even more, converting further units to run on compressed wood pellets. This is the fastest and most reliable way to support the UK’s decarbonisation targets, whilst minimising the cost to households and businesses.

In a challenging commodity environment Drax has delivered a good operational performance with 65% renewable power generation.

 

The acquisition of Opus Energy and rapid response open cycle gas turbine projects are an important step in delivering our strategy, diversifying our earnings base and contributing to stronger, long-term financial performance across the markets in which we operate.


Related documents:

A positive negative

Tubes running in the direction of the setting sun. Pipeline transportation is most common way of transporting goods such as Oil, natural gas or water on long distances.

This story was updated in June 2018 following the announcement of Drax’s pilot BECCS project.

Is there a way to generate electricity not only with no emissions, but with negative emissions?

It’s an idea that, after decades of being reliant on coal had seemed almost impossible. But as Drax has shown by announcing a pilot of the first bioenergy carbon capture storage (BECCS) project of its kind in Europe, it might not be impossible for much longer.

A few years on from the historic Paris Agreement – which sets a target of keeping global temperature rise below two degrees Celsius – innovative solutions for reducing emissions are critical. Among these, few are more promising than BECCS.

It sounds like a straightforward solution – capture carbon emissions and lock them up hundreds of metres underground or turn the carbon into useful products – but the result could be game-changing: generating electricity with negative emissions.

Capturing carbon

Carbon capture and storage (CCS) technology works by trapping the carbon dioxide (CO2) emitted after a fuel source has been used and moving it to safe storage – often in depleted oil and gas reservoirs underground.

There are a number of CCS technologies available but one of the simplest is oxyfuel combustion. Fuel such as coal, gas or biomass, is burnt in a high oxygen environment and CO2 – rather than carbon (C) or carbon monoxide (CO) – is produced. Other impurities are removed and the resulting pure CO2 is compressed to form a liquid. This CO2 can then be transported via pipeline to its designated storage space, normally hundreds of metres underground.

The UK is well-placed to benefit from the technology thanks to the North Sea – which has enough space to store the EU’s carbon emissions for the next 100 years.

It’s a technology that can drastically reduce the emissions from fossil fuel use, but how can it be used to produce negative emissions?

Two technologies, working as one

Biomass, such as sustainably sourced compressed wood pellets, is a renewable fuel – the CO2 captured as part of its life in the forest is equal to the emissions it releases when used to generate electricity. When coupled with CCS, the overall process of biomass electricity generation removes more CO2 from the atmosphere than it releases.

A report published by the Energy Technology Institute (ETI) looking at the UK has suggested that by the 2050s BECCS could deliver roughly 55 million tonnes of net negative emissions a year – approximately half the nation’s emissions target.

It’s not the only body heralding it as a necessary step for the future. The Intergovernmental Panel on Climate Change (IPCC), stated in a 2014 report that keeping global warming below two degrees Celsius would be difficult if BECCS had limited deployment.

Support is widespread, but for it to lead to a practical future, BECCS needs suitable support and investment.

Morehouse BioEnergy pellet plant

Mills such as Morehouse BioEnergy manufacture compressed wood pellets – a sustainably-sourced fuel for BECCS power plants of the future.

Positive support for negative emissions

There are only a handful of CCS projects in operation or under construction across the world and many simply re-use rather than capture the CO2. Part of the reason is cost. It’s estimated that optimal CCS technology can cost about as much as the power station itself to install, and running it can consume up to 20% of a station’s power output. This means more fuel is needed to produce the same amount of power compared to a conventional power plant of similar efficiency.

Without government support, it remains a prohibitively expensive solution for many power generators. With government support in the form of multi-decade contracts, large CCS or BECCS plants could leverage economies of scale. They could deliver energy companies and their shareholders a return on the investments in the long-term.

Drax research and development

Past plans by Drax could have put the company on a timeline towards becoming the world’s first large scale negative emitter of CO2. It would have achieved it firstly with the construction of a CCS power station at its Selby, North Yorkshire site.

The 428 MW White Rose power station was to be fuelled by a mixture of coal and biomass and once in operation, could have paved the way for similar facilities elsewhere as carbon capture technology improved and costs came down, but unfortunately the project never went ahead.

There are some positive signs that carbon capture technologies are developing around the world. The first ‘clean coal’ power station became operational in the US earlier this month – and a second CCS plant is on the way. A UK-backed carbon capture and use (CCU) project in India recently opened at a chemicals factory, involving the capture of emissions for use in the manufacturing process.

Back in the UK, where the government outlined plans to end coal-fired power generation by 2025, carbon capture power stations must become financially competitive if they are to become a major part of the country’s low carbon future. But if the world is to achieve the targets agreed in Paris and pursue a cleaner future, negative emissions are a must, and BECCS remains a leading technology to help achieve it.

Building a 21st century port

In its long history, the Port of Liverpool has dealt with a number of industries. It’s a port characterised by its ability to adapt to the needs of the time. In 1715 it emerged as one of the world’s first ever wet docks. In the 18th century it was used as a hub for the slave trade.

When slavery was abolished in the early 19th century, Liverpool switched to bringing in the goods of the thriving Empire, such as cotton. When goods like cotton dried up, it switched to the fuel of the Industrial Revolution: coal.

Now as the world (and the UK government) moves away from fuels like coal and towards lower-carbon and renewable resources, the Port of Liverpool needed to adapt once again.

Gary Hodgson, Chief Operating Officer at Peel Ports, explains: “About three years ago everyone was asking, ‘What happens after coal?’”

Biomass silos at the Port of Liverpool

What happens after coal?

Peel Ports is one of the biggest operators of Liverpool’s shipping infrastructure, including Liverpool Port. Seeing that the future of coal was finite, it recognised there was a need for a port that could bring in alternative, renewable fuels.

At the same time Drax was looking for a logistics partner to facilitate the importing of compressed wood pellets. Since 2009 Drax Power Station had begun a process of upgrading its coal-fired boilers to run on sustainable biomass, sourced from huge, well-established working forests. More than this, it had plans to set up its own pellet manufacturing plants in the US South and needed to import large quantities of wood pellets.

The relationship with Peel Ports and Liverpool was obvious. This began a £100 million investment that helped transform the region’s port-station transport infrastructure.

“It’s about working in partnerships with companies,” says Hodgson. “Working this way helps develop solutions that really work.”

The central element of the partnership between Drax and Peel Ports was a radical redesigning of the technical infrastructure. Not only do compressed wood pellets have fundamentally different physical properties to other fuels like coal, they are more combustible and need to be handled safely.

For the three-million-tonne-capacity facility that Peel Ports and Drax wanted to build, innovative supply chain solutions had to be developed.

A tool used to transfer compressed biomass pellets

Shifting biomass in bulk

The first challenge was getting the high-density pellets off giant ships. For this, Peel and Drax designed a solution that uses an Archimedean screw – a long tube with a spiral winding up the inside that allows liquids, or materials that can behave like a liquid (like wood pellets), to defy gravity and travel upwards.

At the top of the screw, the pellets are emptied onto a conveyor belt and carried to one of three purpose-built silos tailored to safely storing thousands of tonnes of biomass.

Here the pellets wait until another conveyor belt deposits them onto specially-design biomass trains where they are transported across the peaks of the Pennines to Drax Power Station near Selby in North Yorkshire.

Each step at the port is automated, designed with supreme efficiency in mind by a team of Drax and Peel Port engineers. End-to-end, port to power station, the whole process can take as little as 12 hours.

Drax biomass ship in the Port of Liverpool

A new chapter for the north

In the varied history of the Port of Liverpool the new facility is another chapter, one that is helping transform the logistics infrastructure and the economic growth of the North West.

Now open and operational, the facility directly employs 50 people – around 500 additional contractors have worked on the project during its construction and development. More than that, it’s an investment in the country’s energy future. It secures a fourth port for Drax –  three others are on the east coast – helping with security of supply.

“We made this investment because we recognised this as the future of the energy mix of the country,” Hodgson explain. “We can’t just rely on one form of power – there has to be an energy mix and we see biomass as a key part of that.”