Tag: BECCS (bioenergy with carbon capture and storage)

Biomass and BECCS are essential in the UK’s journey to Net Zero

The Strategy provides an important steer on the short-, medium- and long-term use of biomass in the UK’s 2050 Net Zero target.

With the Government’s Strategy in hand, I am more certain than ever on two things.  First, that there remains a clear and powerful role for biomass and BECCS in helping the UK balance harder to abate sectors, like aviation, and reach Net Zero.

And secondly, that bioenergy with carbon capture and storage (BECCS) has a vital role to play in our global energy transition – and that Drax is well placed to deliver.

Why we should be confident

In developing the Strategy, the Government has considered several factors including: availability of biomass and the priorities for end use; impacts on air quality; the sustainability of biomass use; as well as the role of BECCS in helping to reach our long-term climate goals.

The ‘Priority Use Framework’ evaluates where biomass would be most sustainably and efficiently used across sectors, given supply constraints. This framework is an important tool, which has been developed with four key principles in mind; sustainability; air quality; the circular economy and resource efficiency; and ability to support us getting to Net Zero.

Critically, the Priority Use Framework states that:

  1. In the short-term (2020s) government will continue to facilitate sustainable biomass deployment through a range of incentives and requirements covering power, heat and transport
  2. In the medium-term (to 2035) government intends to further develop biomass use for utilities such as heat and power with a view to where possible transition to BECCS
  3. Biomass for use in BECCS should be prioritised in the long term (to 2050)

It’s very encouraging to see Government recognise the important role that biomass plays in our energy transition in both the short and medium term, as well as its prioritisation of BECCS in the long term.

Although there are various routes for deploying BECCS across different industries, the strategy further prioritises the deployment of BECCS on existing biomass generation plants with established supply chains, further supported by the development of the Power-BECCS business model for the first BECCS projects.

The Strategy is also promising as it presents an evidence-driven basis for long-term policy stability and I believe if the Government continues in this direction, it will draw investment to the UK’s bioenergy industry.

Why this is critical for the country

Biomass has already played an important role in supporting energy security while helping the UK decarbonise, displacing fossil fuels with a source of renewable, dispatchable power. Our work has also made a significant contribution to the UK economy, adding an estimated £1.8 billion to the UK GDP and supporting 17,800 jobs in 2021 alone.

And, looking to the future, BECCS presents an enormous opportunity to the UK.

Early investment in this critical technology has the potential to support energy security, and climate targets whilst creating jobs and making the UK a leader in the potentially trillion-dollar global CDR market.

This work needs to happen now – nearly all realistic pathways to limit warming to 1.5C require the carbon removal technology and renewable power BECCS offers, and expert voices at the UN’s Intergovernmental Panel on Climate Change, the UK’s Climate Change Committee, and Forum for the Future have said that carbon removals will be needed to address the climate crisis.

Today’s Strategy is a clear signal from Government that they recognise the importance of BECCS and the urgency with which we must employ it within the UK.

Why this is encouraging for Drax

Drax is an international, growing, sustainable business at the heart of global efforts to deliver Net Zero and energy security and I believe the Strategy we have seen from Government today is a clear indication of their support for the work that we do.

With BECCS, Drax has the ability to become a global leader in carbon removals technology. We are engaged in formal discussions with the UK Government about the project and, providing these are successful, we plan to invest billions in transforming Drax Power Station into the world’s largest carbon removals project. The prioritisation of BECCS within the Priority Use Framework shows the Government is aligned to this vision.

As we look forward

We welcome the Government’s Biomass Strategy and will continue to unpack what it means for our business over the coming days and weeks with a mind to our next steps.

Government must now ensure that as it progresses its consultation on biomass sustainability that that process is equally evidence-driven and ensures that science-based methods drive the policy forward. We hope to continue to work alongside Government to support these efforts.

Our formal discussions with the UK Government on BECCS and a ‘bridging mechanism’ to support the transition to BECCS have been productive, but to realise the scale of the ambition included in the Government’s Strategy, we need commitment through the delivery of a clear business model that supports BECCS.

Today’s support from Government brings us a big step closer and we look forward to continuing the work.

Will Gardiner
CEO
Drax

Read RNS here

UK Biomass Strategy – Highly Supportive of Biomass and a Priority Role for BECCS

The Strategy outlines the potential extraordinary role which biomass can play across the economy in power, heating and transport, including a priority role for Bioenergy Carbon Capture and Storage (BECCS), which is seen as critical for meeting net zero plans due to its ability to provide large-scale carbon removals.

Will Gardiner, Drax CEO, said:

Will Gardiner, Drax Group CEO

“We welcome the UK Government’s clear support for sustainably sourced biomass and the critical role that BECCS can play in achieving the country’s climate goals.

“The inclusion of BECCS at the top of a priority use framework is a clear signal that the UK wants to be a leader in carbon removals and Drax is ready to deliver on this ambition. We are engaged in formal discussions with the UK Government about the project and, providing these are successful, we plan to invest billions in delivering BECCS at Drax Power Station in North Yorkshire, simultaneously providing reliable, renewable power and carbon removals.

“We look forward to working alongside the Government to ensure biomass is best used to contribute to net zero across the economy, through further progression of plans for BECCS and ensuring an evidence-driven, best practice approach to sustainability.”

A priority role for BECCS

The Strategy reiterates the Government’s ambition to deliver 5Mt pa of carbon removals by 2030, with the potential for this to increase to 23Mt by 2035 and up to 81Mt by 2050, with BECCS expected to provide the majority of the total in 2050.

In the period to 2035 Government intends to facilitate the use of biomass for power and heating, whilst supporting projects transitioning to BECCS. BECCS projects, which includes Drax Power Station, are seen as a priority use of biomass given existing generation assets with established supply chains and Carbon Capture and Storage (CCS) technology ready to be deployed. Beyond 2035 there will remain a role for biomass without BECCS in harder to decarbonise sectors and in supporting energy security.

The Strategy notes the active work in government to support BECCS, including the development of business models.

Biomass availability and sustainability

The Strategy considers the global availability of sustainable biomass, finding that by using domestic and imported biomass sources there is sufficient material to meet estimated future demand in the 6th Carbon Budget.

Alongside the increased use of sustainable biomass, Government will continue to develop sustainability criteria and Drax supports the development of robust standards across sectors.

A link to the Strategy can be found here.

Scientific assessment of carbon removals from BECCS

Alongside publication of the Strategy, the Government has published an evidence-based assessment of BECCS as a route to negative emissions. The report sets out how “well regulated” BECCS can deliver negative emissions and ensure positive outcomes for people, the environment, and the climate.

BECCS at Drax Power Station

In March 2023, the Government confirmed its commitment to support the deployment of large-scale Power-BECCS projects by 2030 and that the Drax Power Station BECCS project had passed the deliverability assessment for the Power-BECCS project submission process.

Formal bilateral discussions with the Government are ongoing to move the project forward and help realise the Government’s ambition to deliver 5Mt pa of carbon removals by 2030. These discussions include a bridging mechanism between the end of the current renewable schemes in 2027 and the commissioning of BECCS at Drax Power Station.

Drax believes that BECCS at Drax Power Station is the only project in the UK that can enable the Government to achieve this ambition, in addition to the large-scale renewable power and system support services it provides to the UK power system.

In July 2023, the Government designated the Viking CCS cluster as a Track 2 cluster. Progressing a CO2 transport and storage network in the Humber represents a significant step toward helping the region meet its net zero ambitions and ensuring that it remains a source of high-skilled jobs and energy security for decades to come. Along with the East Coast Cluster, Viking creates an additional potential pathway to support BECCS at Drax Power Station.

The Government has also confirmed that during 2023 it will set out a process for the expansion of its wider CCS programme for individual projects, including BECCS (Track 1 expansion and Track 2).

Enquiries:

Drax Investor Relations:

Mark Strafford
+44 (0) 7730 763 949

Media:

Drax External Communications:

Chris Mostyn
+44 (0) 7548 838 896

Sloan Woods
+44 (0) 7821 665 493

END

Half year results for the six months ended 30 June 2023

RNS Number: 3301H
Drax Group plc
(“Drax” or the “Group”; Symbol:DRX)

Six months ended 30 June20232022
Key financial performance measures
Adjusted EBITDA (£ million)(1)(2)(excl. Electricity Generator Levy) (EGL)(3)453225
Adjusted EBITDA (£ million)(1)(2)(incl. EGL)417225
Net debt (£ million)(4)1,2741,116
Adjusted basic EPS (pence)(1)46.020.0
Dividend (pence per share)9.28.4
Total financial performance measures from continuing operations
Operating profit (£ million)392207
Profit before tax (£ million)338200

Will Gardiner, Drax Group CEO

Will Gardiner, CEO of Drax Group, said:

“In the first half of 2023, we delivered a strong system support and generation performance, providing dispatchable, renewable power for millions of UK homes and businesses. Drax Power Station remained the UK’s single largest provider of renewable energy by output during the period.

“We continue to focus on our role as the UK’s leading generator of flexible renewable power and our ambition to be a world leader in carbon removals. To that end, in the US, we have made good progress screening options for BECCS projects which can deliver long-term, large-scale carbon removal and attractive opportunities for growth.

“We are excited about the opportunity for BECCS in the UK and are in formal discussions with the UK Government to facilitate the transition to BECCS at Drax Power Station by 2030. Our plans could create thousands of new jobs in the Humber region, help the UK meet its carbon removals targets and support long-term energy security.”

Financial highlights – strong financial performance and returns to shareholders

  • Adjusted EBITDA (excl. EGL) of £453 million up 101% (H1 2022: £225 million)
    • Driven by system support services and dispatchable, renewable generation
  • Strong liquidity and balance sheet – £586 million of cash and committed facilities at 30 June 2023
    • Expect Net debt to Adjusted EBITDA (incl. EGL) to be significantly below 2 times target at the end of 2023
  • Sustainable and growing dividend – expected full year dividend up 10% to 23.1 p/share (2022: 21.0 p/share)
    • Interim dividend of 9.2 p/share (H1 2022: 8.4 p/share) – 40% of full year expectation
  • £150 million share buy-back programme ongoing(5)

2023 outlook

  • Full year expectations for Adjusted EBITDA and EGL unchanged and in line with analysts’ consensus estimates(6), inclusive of increased development expenditure on US BECCS
  • For the remainder of 2023 Drax will present Adjusted EBITDA including and excluding EGL

Progressing options for £7 billion of strategic growth opportunities 2024-2030, primarily BECCS

  • Ambition for the development of over 20Mt pa of carbon removals – 14Mt pa by 2030
    • New-build BECCS – two sites selected in US – targeting c.6Mt pa by 2030
    • Evaluating additional sites for greenfield and brownfield BECCS in US
    • Drax Power Station – targeting 8Mt pa by 2030
  • Targeting 8Mt pa of pellet production capacity and 4Mt pa of third-party sales by 2030
  • Targeting 600MW expansion of Cruachan Pumped Storage Power Station by 2030
    • Planning approval granted (July 2023)

UK BECCS

  • UK BECCS investment paused, subject to further clarity on support for BECCS at Drax Power Station
  • Formal discussions with UK Government – bridging mechanism between end of current renewable schemes in 2027 and BECCS

Operational review

Pellet Production – production and sales supporting UK generation, and sales to third parties

  • Adjusted EBITDA £48 million (H1 2022: £45 million)
  • Integrated supply chain model supports resilience and opportunities in a challenging market
    • Producer, user and seller of biomass pellets across multiple international markets
  • Production of 1.9Mt (H1 2022: 2.0Mt)
    • Unplanned outages, wind damage at Port of Baton Rouge and temporary suspension of production at one site due to wildfires, partially offset by production at the Demopolis plant
    • Ongoing disruption in H2 from wildfires and industrial action by Canadian transport workers in July
  • Increase in production cost (maintenance, labour, transport, energy and fibre costs) offset by revenue growth
  • Progressing development of new Longview pellet plant and Aliceville expansion
    • Investment of c.$300 million, operational 2025, 0.6Mt of new capacity
  • Third-party sales – heads of terms agreed for sale of 0.5Mt of biomass over five years to a Japanese customer

Generation – renewable generation and system support services

  • UK’s largest source of renewable power by output, primarily biomass generation at Drax Power Station
    • 9% of annualised UK renewables(7)
  • Adjusted EBITDA (excl. EGL) £457 million up 123% (H1 2022: £205 million)
    • Adjusted EBITDA (incl. EGL) £421 million up 106% (H1 2022: £205 million, £nil EGL)
  • Biomass generation – strong system support and renewable generation performance
    • Period-on-period reduction in generation
      • Maintenance – first major planned outage completed, second major planned outage in H2 2023 and forced outage on one unit due to a transformer issue – unit back in service
    • Higher achieved power price and value from system support
    • Higher biomass costs
  • Pumped storage and hydro – strong system support and generation performance
    • £154 million Adjusted EBITDA (excl. EGL) (H1 2022: £53 million)
    • Includes forward sale of peak power (winter 2022)
    • Increased level of wind capacity, intermittency and volatility underpin long-term need for dispatchable generation
  • Coal – no generation in 2023 – currently decommissioning following formal closure (March 2023)
  • As at 21 July 2023, Drax had 28.1TWh of power hedged between 2023 and 2025 on its ROC, pumped storage and hydro generation assets at an average price of £150.0/MWh(8)
    • Excludes sales under the CfD mechanism, which remains available subject to good ROC unit operational performance and market conditions
Contracted power sales 21 July 2023202320242025
Net ROC, hydro and gas (TWh(8/9/10))11.711.25.2
Average achieved £ per MWh162.7147.5126.2
Lower expected level of ROC generation in 2023 due to major planned outages on two units

Customers – renewable power sales to high-quality Industrial & Commercial (I&C) customers

  • Adjusted EBITDA of £37 million (H1 2022: £24 million) reflects continued improvement in I&C portfolio
    • 8.0TWh of power sales to I&C customers – c.16% increase compared to H1 2022 (6.9TWh)

Other financial information

Adjusted EBITDA and EGL

  • Accrued costs for EGL for the first time in H1 2023 and reported EGL within Adjusted EBITDA
    • H1 charge of £35 million
    • H2 charge expected to increase significantly reflecting higher achieved power price in H2
  • For the remainder of 2023 Drax will present Adjusted EBITDA including and excluding EGL

Profits

  • Total operating profit of £392 million (H1 2022: £207 million), including £85 million mark-to-market gain on derivative contracts
  • Total profit after tax of £247 million (H1 2022: £148 million profit after tax, including an £8 million non-cash charge from revaluing deferred tax balances) includes an increase in the headline rate of corporation tax in the UK from 19% to 25% from 1 April 2023
  • Depreciation and amortisation of £109 million (H1 2022: £121 million)

Capital investment

  • Capital investment of £210 million (H1 2022: £60 million) – primarily maintenance and development of OCGTs
  • 2023 expected capital investment of £520-580 million
    • Includes £120-140 million maintenance, including two major planned outages on biomass units; £30 million enhancements; £340-380 million strategic, including OCGT and pellet plant developments
    • OCGTs – c.900MW – three new-build sites in England and Wales, commissioning in 2024 – continuing to evaluate options for these projects, including their potential sale
    • Reduction in expected annual investment due to pause in investment in UK BECCS

Cash and interest

  • Group cost of debt c.4.6%
  • Cash generated from operations £404 million (H1 2022: £185 million)
  • Net debt of £1,274 million (31 December 2022: £1,206 million), including cash and cash equivalents of £125 million (31 December 2022: £238 million)

Capital allocation policy – unchanged

  • Continue to assess capital requirements in line with the current policy
    • Considerations include the timing of capital deployment, leverage profile, any dilution from share issuance and divestment of non-core assets

Progressing Global BECCS opportunities

RNS Number : 2686A
Drax Group plc
(“Drax” or the “Group”; Symbol:DRX)

Ambition for the development of over 20Mt of carbon removals – 14Mt pa by 2030

  • New-build BECCS – two sites selected in US – targeting c.6Mt pa by 2030
  • Evaluating nine additional sites in US for greenfield and brownfield BECCS
  • Option for CCS on a pellet plant – targeting FID in 2024/25, commissioning in 2026
  • Targeting 8Mt pa at Drax Power Station by 2030
  • Establishing HQ for Global BECCS in Houston, Texas

Progress on Global BECCS commercial arrangements

  • MoU with Respira for sale of up to 2Mt of Carbon Dioxide Removal (CDR) certificates
  • Other MoUs agreed for sale of CDRs – c.$300/t on small volumes
  • MoUs agreed with leading forestry and Transportation and Storage (T&S) companies

Attractive portfolio of investment opportunities

  • £7bn of strategic growth opportunities between 2024 and 2030
    • 14Mt pa of carbon removals from BECCS, pellet production and pumped storage hydro
  • Targeting returns significantly in excess of the Group’s cost of capital

2023 outlook

  • Expectations for Adjusted EBITDA(1) remain in line with analysts’ consensus estimates(2)

Drax Group CEO, Will Gardiner said:

Will Gardiner, Drax Group CEO

“The world’s leading climate scientists at the UN’s IPCC are clear – the planet cannot solve the climate crisis without the combination of reliable, renewable electricity and carbon removal technologies.

“Drax is a growing and sustainable, international business providing flexible, renewable energy and carbon removals solutions, via BECCS, which put us at the heart of global efforts to deliver net zero and energy security.

“Our plans to invest billions in critical renewable energy and carbon removal technologies will help to tackle the climate crisis and could create thousands of jobs whilst generating secure, renewable power. This investment is underpinned by our strong operational performance.”

Capital Markets Day

Drax is today hosting a Capital Markets Day for investors and analysts.

Will Gardiner and members of his leadership team will update on the Group’s strategy, market opportunities and development projects, including the progress Drax is making in the development of BECCS in North America and the opportunities this represents for the Group.

Purpose and ambition

The Group’s purpose is to enable a zero carbon, lower cost energy future and its ambition is to be a carbon negative company by 2030. The Group aims to realise its purpose and ambition through three strategic pillars, which are closely aligned with global energy policies that increasingly recognise the role that biomass can play in the fight against climate change.

The Group’s three strategic pillars remain (1) to be a global leader in carbon removals, (2) to be a global leader in sustainable biomass pellets, and (3) to be a UK leader in dispatchable, renewable generation.

Global need for carbon removals

Research by the Intergovernmental Panel on Climate Change (IPCC)(3), the world’s leading authority on climate science, states that CDR methods, including BECCS, are needed to mitigate residual emissions and keep the world on a pathway to limit global warming to 1.5oC.

All of the illustrative mitigation pathways assessed in the IPCC’s latest report use significant volumes of carbon removals, including BECCS, as a key tool for mitigating climate change. The IPCC believes that globally up to 9.5 billion tonnes of CDRs via BECCS will be required per year by 2050.

In the USA, the supportive investment environment created by the Inflation Reduction Act is stimulating action and robust pricing for CDRs.

BECCS – North America

Over the past two years, Drax has been progressing a number of work streams to develop its options for BECCS, with a primary focus on North America.

Drax has continued to develop plans for a new-build BECCS power unit capable of producing c.2TWh of renewable electricity from sustainable biomass and capturing c.3Mt of carbon per year. Two initial sites in the US South have been selected and are progressing to option, although the precise details remain commercially sensitive. The two sites combined could enable the capture of c.6Mt of carbon per year by 2030.

Total investment would be in the region of $2 billion per plant with a target FID in 2026 and commercial operation by 2030. The capital cost reflects the construction of new-build power generation as well as carbon capture and storage (CCS) systems.

The design of new-build BECCS enables a wider choice of biomass materials, including non-pelletised material, such as woodchips. Drax aims to locate new plants in regions which are closer to sources of sustainable biomass and T&S systems to permanently store CO2. This is expected to significantly reduce the operating cost of new-build BECCS compared to retrofit, as well as carbon emissions in the supply chain.

The Group is continuing to evaluate nine further sites in North America, creating a pipeline of development opportunities into the 2030s.

Commercial arrangements

The commercial model for US BECCS includes Power Purchase Agreements, long-term CDR offtake agreements and a direct pay tax incentive under the Inflation Reduction Act of $85/tonne.

Drax believes that the role of high-quality, permanent removals, such as BECCS and Direct Air Capture, will grow significantly as governments and companies take action to address their own carbon footprints. In September 2022, Drax announced a Memorandum of Understanding (MoU) for one of the world’s biggest carbon removals deal with Respira, a carbon broker. Under the terms of the MoU, Respira will be able to purchase up to 2Mt of CDRs over a five-year period from Drax’s North American BECCS projects.

Drax has also agreed MoUs with C-Zero, a carbon broker, for the sale of CDRs at c.$300/tonne.

Resourcing

To support the development of its BECCS projects in North America, Drax has hired 80 employees across the US and Canada and is in the process of establishing a Global BECCS headquarters in Houston, Texas, which will provide access to the highly skilled workforce needed to support the growth of this part of the Group.

Other developments

In addition to new-build BECCS, Drax is currently developing an option for a project to add a carbon capture process to an existing pellet plant in Louisiana. The project would have the capacity to capture over 100k tonnes of CO2 per year from the pelleting process, providing an early demonstration of the technology and creating CDRs which can help to stimulate this nascent market. The project, which has a capital cost in the region of $150 million, is targeting FID in 2024/25 and commissioning in 2026.

The Group is also assessing options for BECCS on existing non-Drax assets and is continuing to screen other regions, including Europe and Australasia.

Capital allocation

The Group has previously outlined a fully funded plan to invest c.£3 billion in two BECCS units at Drax Power Station, pellet production and pumped storage hydro.

Today, the Group expands on this plan to include two new-build BECCS plants and CCS on a pellet plant, increasing the total potential investment to c.£7 billion between 2024 and 2030.

Any final investment decisions will be subject to the achievement of project milestones, including further progress on commercial arrangements as well as clarity on regulatory and funding mechanisms.

Reflecting strong expected cash generation from existing assets and new investments, Drax can fully fund the £7bn of opportunities and return to net debt to Adjusted EBITDA below 2x by the end of 2031. Drax will also continue to assess a wider range of funding options, including project finance.

The Group remains committed to its capital allocation policy, which was established in 2017, and has delivered average annual dividend per share growth of around 11%.

The Group has commenced a £150 million share buyback programme, which is expected to complete by the end of 2023. The programme is not expected to have any impact on the Group’s medium and long-term growth plans and, beyond the current buyback programme, will continue to assess its capital requirements in line with the current policy, including the return of excess capital to shareholders.

Outlook

The Group’s outlook for 2023, as set out in its recent Trading Update, remains unchanged and provides a strong platform for long-term investment and returns to shareholders.

Drax continues to expect full year Adjusted EBITDA(1) for 2023 to be in line with analysts’ consensus estimates(2), subject to continued good operational performance.

Webcast and presentation material

The event will be webcast from 2pm (UK) and the material made available on the Group’s website at that time. Joining instructions for the webcast and presentation are included in the links below.

https://secure.emincote.com/client/drax/drax025
https://www.drax.com/investors/announcements-events-reports/presentations/

Notes:
[1] Earnings before interest, tax, depreciation, amortisation, excluding the impact of exceptional items and certain remeasurements. Excludes the Electricity Generator Levy, which is currently presented as a tax and reflected in EPS.
[2] As of 18 May 2023, analyst consensus for 2023 Adjusted EBITDA was £1,162 million, with a range of £1,100 – 1,200 million. The details of this company collected consensus are displayed on the Group’s website. Excludes the Electricity Generator Levy, which is currently presented as a tax and reflected in EPS.
[3] IPCC Sixth Assessment Report, Working Group III (2022).
https://www.drax.com/wp-content/uploads/2023/05/Company-Collected-Consensus-May-2023.pdf

Enquiries:

Drax Investor Relations: Mark Strafford
+44 (0) 7730 763 949

Media:

Drax External Communications: Chris Mostyn
+44 (0) 7548 838 896

Drax enters formal discussions with UK Government on large-scale Power BECCS

Drax has been invited to enter formal bilateral discussions with the Government immediately, to move the project forward and ensure the Government is able to fulfil its restated commitment to achieving 5Mtpa of engineered Greenhouse Gas Removals (GGRs) by 2030. Drax believes that BECCS at Drax Power Station is the only project that can enable the Government to achieve this goal(1). The Government has also committed to publish its biomass strategy by the end of June 2023 which will set out how the technology could be deployed.

During 2022 carbon removal projects, including Power BECCS, were progressed in parallel with the Track 1 process for gas, hydrogen and industrial CCS projects. While Power BECCS and other shortlisted projects are not included in the immediate Track 1 process, the Government has confirmed that in 2023 it will set out a process for the expansion of Track 1 and has today launched Track 2. BECCS is eligible for both.

Separately, the Government has stated that it will work closely with electricity generators currently using biomass to facilitate a transition to Power BECCS.

The Government has also confirmed that its response to the Power BECCS business model consultation, which took place in 2022, will be published imminently, providing further clarity on the delivery of BECCS as soon as possible.

Drax Group CEO, Will Gardiner said:

“Delivery of BECCS at Drax Power Station will help the UK achieve its net zero targets, create thousands of jobs across the north and help ensure the UK’s long-term energy security.

“We note confirmation that our project has met the Government’s deliverability criteria and Government remains committed to achieve 5Mtpa of engineered Greenhouse Gas Removals by 2030 – a goal that cannot be achieved without BECCS at Drax Power Station. We will immediately enter into formal discussions with Government to take our project forward.

“With the right engagement from Government and swift decision making, Drax stands ready to progress our £2bn investment programme and deliver this critical project for the UK by 2030.”

The Government recognises the important role which BECCS will play in delivering net zero and aims to deploy 5Mt of engineered CO2 removals per annum from BECCS and other engineered GGR technologies by 2030, rising to 23Mt in 2035 and up to 81Mt in 2050 to keep the UK on a pathway to meet its legislated climate targets, The Sixth Carbon Budget and net zero.

Drax Power Station is the UK’s largest single source of renewable electricity and BECCS is the only technology that can produce reliable renewable power, provide system support services and permanently remove CO2 at scale. 

Coal closure

Drax continues to expect to close its two legacy coal units at the end of March 2023.

Notes

(1)  In its Energy White Paper, Government noted that biomass is unique amongst renewable technologies in the wide array of applications in which it can be used as a substitute for fossil-fuel based products and activities, along with its ability to deliver permanent carbon removals.

Government recognises that biomass is one of the UKs most valuable tools for reaching net zero emissions while maintaining energy security.

Biomass is the only large-scale source of dispatchable, renewable electricity and Drax power station in Yorkshire is the largest provider of secure supply in the UK’s electricity system. Its renewable biomass generation provides 2.6GW of electricity, representing 4% of the UK’s dispatchable capacity and supplies millions of homes and businesses with dispatchable, reliable power. 

The project at Drax Power Station is expected to be the world’s biggest engineered carbon removal project, permanently removing 8Mt of CO2 from the atmosphere every year by 2030.

The project would see the addition of post combustion carbon capture to two of the existing biomass units, using sustainable biomass and technology from Drax’s technology partner, Mitsubishi Heavy Industries. Captured CO2 would be transported and permanently stored by the Group’s partners in the East Coast Cluster.

Vivid Economics concluded that it could deliver £370 million of economic benefit for the UK during construction, creating and supporting more than 10,000 jobs during peak construction.

Recent Baringa research also demonstrates that Drax is the UK’s largest source of energy security and will continue to play a vital role in the UK security of supply in to the late 2020s.

Drax aims to source 80% of materials and services for the project from British businesses and is also working with British Steel to explore opportunities for its UK production facilities to supply a proportion of the steel needed for BECCS.

A link to the Government’s announcement can be found here.

Enquiries:

Drax Investor Relations: Mark Strafford

+44 (0) 7730 763 949

Media:

Drax External Communications: Chris Mostyn

+44 (0) 7548 838 896

Carbon markets will be essential in reaching net zero – we must ensure they support high standards

Angela Hepworth, Commercial Director, Drax

In brief:

  • The voluntary carbon market will be essential in deploying engineered carbon removals technologies like Bioenergy with carbon capture and storage (BECCS), and direct air carbon capture and storage (DACS) at scale.
  • The Integrity Council for the Voluntary Carbon Market is developing a set of Core Carbon Principles (CCPs).
  • Drax support proposed principles if they’re applied in ways appropriate for engineered carbon removals.
  • Standards around additionality and the permanence of carbon removals may apply very differently to nature-based and engineered removals, something that needs to be addressed explicitly.

There’s growing recognition, in governments and environmental organisations, of the urgent need to develop high-integrity engineered carbon removals at scale if the world has any chance of meeting our collective Paris-aligned climate goals.

Bioenergy with carbon capture and storage (BECCS), and direct air carbon capture and storage (DACS) are two technologies on the cusp of deployment at scale that can remove carbon from the atmosphere and store it permanently and safely. The technology is proven, developers are bringing forward projects, and the most forward-thinking companies are actively seeking to buy removal credits from BECCS and DACS developers.

Yet there’s a risk that the frameworks being developed in the voluntary carbon market could stifle rather than support the development of engineered carbon removals.

Drax is a world-leader in the deployment of bioenergy solutions. Our goal is to produce 12 million tonnes of high-integrity, permanent CO2 removals by 2030 from its BECCS projects in the U.K. and the U.S. We support the development of rigorous standards for CO2 removals that give purchasers confidence in the integrity of the CO2 removals they’re buying. Such standards are also important in providing a clear framework for project developers to work to.

However, the market and its standards have largely developed around carbon reduction and avoidance credits, rather than removals. To create a market that can enable engineered carbon removals at scale, re-thinking is needed to create standards that are fit for purpose to tackle the climate emergency.

Core Carbon Principles

The Integrity Council for the Voluntary Carbon Market is in the process of developing a set of Core Carbon Principles (CCPs) and Assessment Framework (AF) intended to set new threshold standards for high-quality carbon credits.

At Drax, we welcome and support the principles proposed by the Integrity Council. However, it’s crucial they’re applied in ways that are appropriate for engineered carbon removals, and support rather than prevent their development.

Many CCPs are directly applicable to engineered carbon removals and can offer important standards for projects developing removals technologies. Among the most important principles include those stating:

  • Removals must be robustly quantified, with appropriate conservatism in any assumptions made.
  • Key information must be provided in the public domain to enable appropriate scrutiny of the carbon removal activity, while safeguarding commercially sensitive information.
  • Removal credits should be subject to robust, independent third-party validation and verification.
  • Credits should be held in a registry which deals appropriately with removal credits.
  • Registries must be subject to appropriate governance, to ensure their integrity without becoming disproportionately bureaucratic or burdensome.
  • Removals must adhere to high standards of sustainability, taking account of impacts on nature, the climate and society.
  • There should be no double counting of carbon removals between corporates, or between countries. Bearing in mind that both corporates and countries may count the same removals in parallel, and that the Article 6 mechanism means countries can decide whether trades between corporates should or shouldn’t trigger corresponding adjustments to countries’ carbon inventories.

However, as pioneers in the field, we believe that two of the Core Carbon Principles need to be adapted to the specific characteristics of engineered carbon removals.

Supporting additionality and development incentives

The CCPs state: “The greenhouse gas (GHG) emission reductions or removals from the mitigation activity shall be additional, i.e., they would not have occurred in the absence of the incentive created by carbon credit revenues.”

Engineered carbon removal credits such as BECCS and DACS are by their nature additional. They are developed for the specific purpose of removing CO2 from the atmosphere and putting it back in the geosphere. They also rely on revenue from carbon markets – largely the voluntary market at present, but potentially compliance markets such as the U.K. and E.U. ETS in the future.

However, most early projects are likely to have some form of Government support (e.g., 45Q in the U.S., or Contracts for Difference in the U.K.) from outside carbon credit revenues. But that support isn’t intended to be sufficient on its own for their deployment – project developers will be expected to sell credits in compliance or voluntary markets.

Engineered carbon removals have high up-front capital costs, and it’s clear that revenue from voluntary or compliance markets will be essential to make them viable.

Additionality assessments should be risk-based. If it’s clear that a technology-type is additional, a technology-level assessment should be sufficient. This should be supplemented with full transparency on any government support provided to projects.

Compensating against non-permanent storage

On the topic of permanence that CCPs state: “The GHG emission reductions or removals from the mitigation activity shall be permanent, or if they have a risk of reversal, any reversals shall be fully compensated.”  A key benefit of engineered carbon removals with geological storage is that they effectively provide permanent carbon removal. Any risk of reversal over tens of thousands of years is extremely small.

The risk of reversal for nature-based credits, by contrast, is much greater. Schemes for managing reversal risk in the voluntary carbon market that have been developed for nature-based credits, are not necessarily appropriate for engineered removals.

Requirements for project developers to set aside a significant proportion of credits generated in a buffer pool, potentially as much as 10%, are disproportionate to the real risk of reversal from a well-manged geological store. They also fail to take account of the stringent regulatory requirements for geological storage that already exist or are being put in place.

Any ongoing requirements for monitoring should be consistent with existing regulatory requirements placed on storage owners and operators. Similarly, where jurisdictions have robust regulatory arrangements for dealing with CO2 storage risk, which place liabilities on storage owners, operators, or governments, the arrangements in the voluntary carbon market should mirror these arrangements rather than cutting across them, and no additional liabilities should be put on project developers.

At Drax, we believe the CCPs provide a suitable framework to ensure the integrity of engineered carbon removals. If applied pragmatically, they can give purchasers of engineered carbon removal credits confidence in the integrity of the product they’re buying and provide a clear framework for project developers. They can ensure that standards support, rather than stifle the development of high integrity carbon removal projects such as BECCS and DACS, which are essential to achieving our global climate goals.

Carbon removals is a global need. The U.S. is making it possible

Key takeaways:

  • Removing carbon from the atmosphere is urgent if we are to meet global climate targets
  • The U.S.’s commitment to supporting carbon removal technologies creates an opportunity for new bioenergy with carbon capture and storage (BECCS) power stations
  • The market for carbon credits is gaining increasing credibility and verification, making it a source of financing for ambitious decarbonization projects
  • Carbon markets are needed now to make investment into vital removals projects possible in the U.S. and globally

After a summer of soaring temperatures across the Northern Hemisphere, the global nature of climate change is more obvious than ever. Forest fires around the world in 2021 resulted in double the loss of tree cover than in 2001, while today more than 2.3 billion people face water stress from drought. It’s clear that the action we take to help tackle the global climate emergency must be international too.

We believe that carbon dioxide (CO2) removals will be crucial in addressing this global challenge. Experts and governments agree that in addition to economy-wide decarbonization, removing carbon from the atmosphere is critical to meeting the goal of net zero CO2 emissions by mid-century. The IPCC says 10 billion tons per year of removals will be needed in 2050 for the world to get to net zero. That’s a huge step up from the 40 million tons captured globally in 2021, but also a significant investment opportunity.

Our ambition is to remove 4 million tons of CO2 through bioenergy with carbon capture and storage (BECCS) outside the UK per year, while generating renewable, baseload electricity and supporting healthy, sustainable forests.

The likely contender for our first location? The United States. We already operate in communities across the U.S. South, employing more than 1,200 people in our sustainable biomass pellet production. Now we are preparing to build a new BECCS power station in the region.

It’s clear to us that the U.S. is an ideal market for BECCS with its long-running sustainable forest industry and range of suitable sites for permanent CO2 storage. We see the country’s efforts to retire coal by 2030 and commitment to innovation as an opportunity to build one of the largest carbon removal projects in the U.S. Our first plant could be capable of permanently removing 2 million tons of carbon from the atmosphere a year, while also generating 2-terawatt hours of 24/7 renewable power.

The U.S.’s newly legislated commitment to tackling climate change through the Inflation Reduction Act, as well as the Department of Energy’s National Renewable Energy Lab recent scenario planning for ‘100% clean electricity system’ are establishing it as the leading market to deploy new environmental technologies. And a new frontier for permanent, high-quality emissions removals.

The need for high quality, permanent emissions removals

A net zero future is only possible through the wide-spread implementation of high-integrity, carbon removals. BECCS offers this by combining low carbon, renewable biomass power generation with carbon capture technology and secure, permanent carbon sequestration.

BECCS works by generating renewable electricity using biomass sourced from sustainably managed forests that absorb CO2 as they grow. CO2 released in the generation process is captured and stored, permanently and safely, in geological rock formations. The overall process removes more CO2 from the atmosphere than it emits, resulting in negative emissions.

This allows us to offer decarbonizing industries high-quality carbon removals credits. Given the scale of CO2that must be removed from the atmosphere and the importance for countries and companies around the world to reach net zero, I believe this market for verified CO2 removal credits is a trillion-dollar opportunity.

Voluntary carbon markets have historically suffered from a lack of sustained and reliable investment due to fluctuating market prices and varying quality of the carbon credits they contain. However, increased oversight from investors, NGOs and independent bodies is encouraging credibility and integrity, prompting sustained adoption by businesses.

Will Gardiner, Drax Group CEO

We’ve demonstrated the growing appetite for carbon removals by signing the worlds largest carbon removals deal to date at New York Climate week. The agreement with Respira, an impact-driven carbon finance business, will allow it to purchase 400,000 metric tons of CO2 removals (CDRs) a year from our North American operations. This would enable other corporations and financial institutions to achieve their own CO2 emissions reduction targets, by purchasing CDRs from Respira.

Deals like these make voluntary carbon markets a more effective means of reducing net CO2 emissions by securing commitments and driving investment in projects that deliver independently verified, high-quality emissions reductions. As the global economy works towards its net zero targets, CO2 removals will be crucial in reducing the still dangerously high levels of carbon in our atmosphere today.

BECCS stands to be a powerful tool in a net zero future as the only technology capable of delivering both high quality, permanent carbon removals, while also delivering baseload renewable power. The ability to generate power with negative emissions will be crucial for increasingly electrified economies, as they move away from fossil fuels.

The potential for the U.S.  

Driven by a dynamic mix of markets, investors and engaged consumers, some of the most prominent U.S. companies are pledging to reach net zero, investing in 24/7 renewable power and other means to do so.

Technology companies like Alphabet, Apple, and Microsoft have laid out ambitious plans to decarbonize operations, supply chains, and even remove historic emissions. Other organizations, like the First Movers Coalition, include U.S. companies from a range of sectors committing corporate purchasing power to solving difficult decarbonization challenges.

This industry readiness is increasingly backed up by legislative policy action. The recent Inflation Reduction Act substantially increases the availability of the 45Q tax credit for carbon capture and storage projects, increasing their value from $50 a ton of carbon removals to $85 per ton, helping to further support the business case needed to deploy technologies like BECCS.

We believe the U.S. is on the right track to create a market in which BECCS can thrive. The Department of Energy’s National Renewable Energy Lab recent ‘100% clean electricity system’ report includes BECCS in three of the four possible scenarios explored. It forecasts the US will need between 7-14GW of installed BECCS capacity by 2035 to achieve an electricity system with net zero CO2 emissions. That equates to removals of approximately 55-120 Mt CO2 per year by 2035.

The U.S.’s established forestry commercial industry, with its credible commitment to sustainable management offers ample low-grade wood and wood industry residues to power BECCS. The country’s long-running exploration of CO2 capture and transport, and history of industrial innovations means there are the skills, supply chains, and regulatory environment to undertake ambitious new infrastructure projects.

LaSalle Forest

BECCS is a proven technology and one that can scale up sooner than any other technology. But action is needed now to make these markets that can deliver large scale carbon removals projects a reality.

Action is needed now

For responsible businesses with the desire to go further, faster, or for sectors still developing viable decarbonization routes, carbon removals from BECCS deliver real, verifiable, and permanent progress towards net zero and beyond, to net negative.

It’s encouraging to see the U.S. pass legislation that can facilitate investment into carbon removal technologies and develop the carbon credit market.

However, carbon markets must have standards that are credible both in the business community, and in the environmental and civil society. Collaboration between governments, corporations, and NGOs will be critical to ensure we create systems that can tackle the climate emergency.

We can’t afford to contemplate theoretical net zero futures. Buying and selling high-quality permanent removals is the action we need today. Now is the time to capture the opportunity and be part of the solution together.

Why the Humber represents Britain’s biggest decarbonisation opportunity

Richard Gwilliam, Head of Cluster Development at Drax

Key takeaways:

  • The Humber industrial cluster contributes £18 billion a year to the UK economy and supports 360,000 jobs in heavy industry and manufacturing.
  • As demand for industrial products with green credentials rises and net zero targets demand decarbonisation, businesses in the Humber need to begin implementing carbon capture at scale.
  • The size of the Humber and diversity of industries make it a significant challenge but if we get it right, the Humber will be a world leader in decarbonisation.
  • Without investment in decarbonisation infrastructure the region risks losing its status as a world leading industrial cluster putting hundreds of thousands of jobs at risk.

When the iconic Humber Bridge opened in June 1981, it did more than just set records for its size. It connected the region, uniting both communities and industries, and allowing the Humber to become what it is today: a thriving industrial hub that contributes more than £18 billion to the UK economy and supports some 360,000 jobs.

As the UK works towards a low-carbon future, the shift to a green economy will require new regional infrastructure, that once again unites the Humber’s people and businesses around a shared goal.

While the Humber Bridge connected the region across the estuary waters, a new subterranean pipeline that can transport the carbon captured from industries, will unify the region’s decarbonisation efforts.

It’s infrastructure that will be crucial in helping the UK reach its net zero goals, but also cement the Humber’s position as a global decarbonisation leader.

The Humber Bridge

Capturing carbon across the Humber

Capturing carbon, preventing emissions from entering the atmosphere and storing them safely and permanently, is a fundamental part of decarbonising the economy and tackling climate change. Aside from the chemical engineering required to extract carbon dioxide (CO2) from industrial emissions, one of the key challenges of carbon capture is how you transport it at scale to secure storage locations, such as below the North Sea bed where the carbon can be permanently trapped and sequestered.

Click to view/download

Engineers at Drax Power Station

At Drax, we’re pioneering bioenergy with carbon capture and storage (BECCS) technology. But carbon capture will play an important role in decarbonising a wide range of industries. The Humber region not only produces about 20% of the UK’s electricity, it’s also a major hub for chemicals, refining, steel making and other carbon-intensive industries.

The consequence of this industrial mix is that the Humber’s carbon footprint per head of population is bigger than anywhere else in the country. At an international level it’s the second largest industrial cluster by CO2 emissions in the whole of Western Europe. If the UK is to reach net zero, the Humber must decarbonise. And carbon capture and storage will be instrumental in achieving that.

The scale of the challenge in the Humber also makes it an opportunity to significantly reduce the country’s overall emissions and break new ground, implementing carbon capture innovations across a wide range of industries. These diverse businesses can be united in their collective efforts and connected through shared decarbonisation infrastructure – equipment to capture emissions, pipelines to transport them, and a shared site to store them safely and permanently.

Economies of scale through shared infrastructure

The idea of a CO2 transport pipeline traversing the Humber might sound unusual, but large-scale natural gas pipelines have criss-crossed the region since the late 1960s when gas was dispatched from the Easington Terminal on the east Yorkshire coast under the Humber to Killingholme in North Lincolnshire. Further, the UK’s existing legislation creates an environment to ensure they can be operated safely and effectively. CO2 is a very stable molecule, compared to natural gas, and there are already thousands of miles of CO2 pipelines operating around the US, where it’s historically been used in oil recovery.

A shared pipeline also offers economies of scale for companies to implement carbon capture, allowing the Humber’s cluster of carbon-intensive industries to invest in vital infrastructure in a cost-effective way. The diversity of different industries in the region, from renewable baseload power generation at Drax to cutting-edge hydrogen production, also offers a chance to experiment and showcase what’s possible at scale.

The Humber’s position as an estuary onto the North Sea is also advantageous. Its expansive layers of porous sandstone offer an estimated 70 billion tonnes of potential CO2 storage space.

The Humber Estuary

 

But this isn’t just an opportunity to decarbonise the UK’s most emissions-intensive region, it’s a stage to present a new green industrial hub to the world. A hub that could create as many as 47,800 jobs, including high quality technical and construction roles, as well as other jobs throughout supply chains and the wider UK economy.

British innovation as a global export

As industries of all kinds across the world race to decarbonise, there’s an increasing demand for products with green credentials. If we can decarbonise products from the region, such as steel, it will give UK businesses a global edge. Failure to follow through on environmental ambitions, however, will not just damage the cluster’s status, it will put hundreds of thousands of jobs at risk.

Breaking new ground is difficult but there are first-mover advantages. The products and processes trialled and run at scale within the Humber offer intellectual property that industrial hubs around the world are searching for, creating a new export for the UK.

But this vision of a decarbonised Humber, that exports both its products and knowledge to the world, is only possible if we take the right action now. We have a genuine global leadership position. If we don’t act now, that will be lost.

Through projects like Zero Carbon Humber and the East Coast Cluster, alongside Net Zero Teesside, the region’s businesses have shown our collective commitment to implementing decarbonisation at scale through collaboration.

As a Track 1 cluster, the Humber presents one of the UK’s greatest opportunities to level up – attracting global businesses and investors, as well as protecting and creating skilled jobs. We need to seize this moment and put in place the infrastructure that will put the Humber at the forefront of a low-carbon future.

Bridging the skills gap to a net zero future starts with education

Jane Breach, Community, and Education lead for Drax Power Station

Key takeaways:

  • Decarbonising the Humber industrial cluster could create as many as 50,000 new jobs – requiring a workforce skilled in the low carbon technologies.
  • Drax’s engagement with local education establishments is important to us as a good neighbour to communities and in bridging the emerging skills gap.
  • We’ve worked closely with nearby Selby College to create a syllabus that will equip both current and future Drax employees with skills for low carbon technologies, including hands-on carbon capture, usage, and storage engineering.
  • Across the UK decarbonising businesses must identify what skills their future employees will need and work with educators to deliver curriculums.

At Drax, we have a long-lasting commitment to promoting Science, Technology, Engineering, and Maths (STEM) education in the Yorkshire and Humber region and beyond.

Delivering the Zero Carbon Humber and the East Coast Cluster initiatives means that we will need a highly skilled labour force to help us reach the region’s goal of building the world’s first net zero industrial region. In practice, this will create roughly 50,000 new jobs in the region – requiring a workforce who are proficient in new and emerging low carbon technologies.

Businesses in education

We have a responsibility to be a good neighbour, support education in our local area, to help secure our talent pipeline, and provide inspiration.

Bruce Heppenstall Drax Plant Director, Lewis Marron, Drax 4th Year Apprentice, and Liz Ridley Deputy Principal at Selby College.

One way we’re helping to develop the next generation of green economy colleagues is through our partnership with nearby Selby College. In 2020, we announced a £180,000 five-year partnership with the college, aimed at supporting education and skills. Last year, we expanded our partnership even further and developed the UK’s first educational programmes dedicated to carbon capture.

Working together, we secured more than £270,000 in funding from the government for the programme, enabling the college to create a new training course in carbon capture, usage, and storage (CCUS) technologies. Our engineers work closely with the college, developing a syllabus that will equip both current and future Drax employees with the vital skills needed to operate negative emissions technology.

This even includes a rig that mirrors the CCUS equipment used in our bioenergy with carbon capture and storage (BECCS) pilot, giving students the chance to work with real equipment rather than just the theory. We believe that by showing students the kind of work we do on-site we can give them a deeper understanding of how we operate.

The Department of Education highlighted the success of our partnership as an example of how business and education can work together – something I believe is crucial to bridging the emerging low carbon skills gap.

The skills gap and future STEM workers

Our work with Selby College has highlighted the significant need to educate and upskill the UK’s workforce in low carbon technologies as quickly as possible. Although most organisations recognise the need to decarbonise, they are uncertain about what they and their employees need to do to achieve this.

There are a lot of conversations about the need for green skills and re-skilling employees in carbon-intensive sectors but to put a real definition on what’s needed is a lot harder. Every company must examine its business plan and try to unpick what skills they will need in 10, 20, or even 50 years down the line – and in such a fast moving world this can prove to be a real challenge.

At Drax, we’re committed to building on our values, as an innovative and best in class place where we care about what matters. We aim to do this by identifying training needs that are linked with new technologies beyond just BECCS, and working together with educators to make sure the relevant courses can either be distributed to other SMEs and large companies or adapted to help retrain people in other sectors.

Our commitment to STEM and education starts with young people and a hands-on curriculum delivered by our engineers to help support teachers. We want to develop deeper, more impactful education programmes that offer them multiple interactions with Drax, our engineers and operations throughout a person’s education.

In my role, you don’t always see the immediate impact. However, when you start talking to people, you realise that you’ve impacted them at some stage on their career journey. That impact is what’s really important to us and to building a net zero Humber.

Find more information about our partnership with Selby College here.